找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Canard Cycles; From Birth to Transi Peter De Maesschalck,Freddy Dumortier,Robert Rouss Book 2021 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 13376|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:26:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Canard Cycles
副標(biāo)題From Birth to Transi
編輯Peter De Maesschalck,Freddy Dumortier,Robert Rouss
視頻videohttp://file.papertrans.cn/222/221033/221033.mp4
概述Provides a self-contained introduction to the study of families of slow-fast systems on surfaces.Contains a unified account of two decades of results on canard cycles.Presents essential techniques in
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Canard Cycles; From Birth to Transi Peter De Maesschalck,Freddy Dumortier,Robert Rouss Book 2021 The Editor(s) (if applicable) and The Auth
描述This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields.The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs..In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities.This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure..The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert‘s 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of tw
出版日期Book 2021
關(guān)鍵詞Canard cycles; Slow-fast systems; limit cycles; vector field; relaxation oscillations; slow-fast bifurcat
版次1
doihttps://doi.org/10.1007/978-3-030-79233-6
isbn_softcover978-3-030-79235-0
isbn_ebook978-3-030-79233-6Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Canard Cycles影響因子(影響力)




書目名稱Canard Cycles影響因子(影響力)學(xué)科排名




書目名稱Canard Cycles網(wǎng)絡(luò)公開度




書目名稱Canard Cycles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Canard Cycles被引頻次




書目名稱Canard Cycles被引頻次學(xué)科排名




書目名稱Canard Cycles年度引用




書目名稱Canard Cycles年度引用學(xué)科排名




書目名稱Canard Cycles讀者反饋




書目名稱Canard Cycles讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:43:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:25 | 只看該作者
Blow-up of Contact Pointsn extending the traditional methods of geometric singular perturbation theory near normally hyperbolic points to contact points. Besides presenting a full description of the blowing up of the well-known generic jump point and the generic turning point, extra properties are provided that play an impo
6#
發(fā)表于 2025-3-22 14:10:03 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:46 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:04 | 只看該作者
0071-1136 f results on canard cycles.Presents essential techniques in This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector f
10#
發(fā)表于 2025-3-23 07:25:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中江县| 方正县| 佳木斯市| 重庆市| 定边县| 昌都县| 肇庆市| 金山区| 高安市| 衡南县| 宜城市| 长春市| 铜梁县| 晋州市| 双城市| 古浪县| 汶川县| 旅游| 南木林县| 驻马店市| 体育| 墨玉县| 聂荣县| 伊春市| 绵竹市| 奉新县| 洛阳市| 汝州市| 绵阳市| 虹口区| 云梦县| 咸阳市| 清远市| 林州市| 宜阳县| 慈溪市| 桦南县| 兰坪| 蚌埠市| 谢通门县| 石林|