找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag

[復(fù)制鏈接]
樓主: Traction
11#
發(fā)表于 2025-3-23 13:23:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:16:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:39 | 只看該作者
Structure-Preserving Implementation,not deteriorate the correct qualitative behaviour of the solution.We study multiple time stepping strategies, the effect of round-off in long-time integrations, and the efficient solution of nonlinear systems arising in implicit integration schemes.
15#
發(fā)表于 2025-3-24 06:16:42 | 只看該作者
16#
發(fā)表于 2025-3-24 07:48:32 | 只看該作者
17#
發(fā)表于 2025-3-24 14:08:13 | 只看該作者
dBASE IV Lernen am Konkreten Beispielsses of numerical methods. We start with Runge–Kutta and collocation methods, and we introduce discontinuous collocation methods, which cover essentially all high-order implicit Runge–Kutta methods of interest. We then treat partitioned Runge–Kutta methods and Nystr?m methods, which can be applied t
18#
發(fā)表于 2025-3-24 17:38:48 | 只看該作者
https://doi.org/10.1007/978-3-322-92882-5ed Runge–Kutta methods, and composition methods by using the notion of rooted trees and B-series. These ideas lead to algebraic structures which have recently found interesting applications in quantum field theory. The chapter terminates with the Baker- Campbell-Hausdorff formula, which allows anoth
19#
發(fā)表于 2025-3-24 19:31:26 | 只看該作者
Arbeitsbereich und Datenausgabe,n manifolds. Our investigation will follow two directions. We first investigate which of the methods introduced in Chap. II conserve invariants automatically. We shall see that most of them conserve linear invariants, a few of them quadratic invariants, and none of them conserves cubic or general no
20#
發(fā)表于 2025-3-25 00:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧阳市| 江口县| 习水县| 资讯 | 故城县| 安宁市| 仪征市| 襄樊市| 平和县| 郓城县| 津南区| 荔浦县| 浦城县| 永年县| 新邵县| 临潭县| 台江县| 孟连| 寻乌县| 土默特左旗| 靖西县| 察哈| 日喀则市| 长葛市| 安塞县| 桃江县| 布尔津县| 昌江| 无锡市| 昭平县| 凤庆县| 宝坻区| 杭锦后旗| 揭西县| 林周县| 宜兰县| 嵊泗县| 绵阳市| 拉萨市| 昌黎县| 望都县|