找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Theory and Boundary Eigenvalue Problems; International Worksh I. Gohberg,H. Langer Conference proceedings 1995 Springer Basel AG 1

[復(fù)制鏈接]
樓主: thyroidectomy
11#
發(fā)表于 2025-3-23 10:39:19 | 只看該作者
,On Some Aspects of V.E. Katsnelson’s Investigations on Interrelations Between Left and Right Blaschby a linear fractional transformation of matrices which is generated by some ..—inner function, where .. :=diag (.., —..),and where the Schur class ..(.) is used as the set of parameters (see, e.g., [BGR], [Dy] and [DFK]). Conversely, there arises the following inverse problem: Given a ..—inner func
12#
發(fā)表于 2025-3-23 16:23:11 | 只看該作者
On Some Development of the S. Krein Pencil Theory, .: .(λ) = λ.. + λ. + . (1)is called a selfadjoint operator pencil. The point λ ∈ . is said to be a regular point of . (λ ∈ .(.)) if 0 ∈ .(.(λ)). Analogously λ ∈ . is a point of the spectrum of . (an eigenvalue of ., respectively) if 0 ∈ σ(.(λ)) (0 ∈ σ.(.(λ)), respectively. The point infinity is sai
13#
發(fā)表于 2025-3-23 20:53:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:35:51 | 只看該作者
On The Spectral on the Theory of an Elliptic Boundary Value Problem Involving an Indefinite Weight,ly, the spectral theory for a pencil of the form . — λ. acting in a Hilbert space ..(Ω), where Ω ? ?. is a bounded region and . ≥ 2. Here . is a non-self adjoint operator and . is a multiplication operator in ..(Ω) induced by a real-valued weight function which assumes both positive and negative val
15#
發(fā)表于 2025-3-24 05:48:10 | 只看該作者
16#
發(fā)表于 2025-3-24 10:25:33 | 只看該作者
Analysis of the Radiation Loss: Asymptotics Beyond all Orders,. (1.1) arises. Here 0 < ∈ ? 1 is a parameter and λ is an eigenvalue. One boundary condition associated with equation (1.1) is . (1.2) for some . > 0. The other boundary condition is imposed at ? = +∞. Several authors have computed a desired quantity Im.(0;λ), which is called the radiation loss, for
17#
發(fā)表于 2025-3-24 13:11:20 | 只看該作者
Selfadjoint Extensions of a Closed Linear Relation of Defect One in a Krein Space, a Krein space (., [·, ·]). These extensions are described by their resolvents, that is, M. G. Krein’s formula for the resolvents of the extensions of a symmetric densely defined operator with defect (1,1) is generalized to the situation considered here. The main difficulties which arise with this g
18#
發(fā)表于 2025-3-24 15:33:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:17:59 | 只看該作者
Nonlinear Equations and Inverse Spectral Problems on the Axis,y problem on the axis (—∞ < ? < ∞). In the papers [4]–[6] the transition from the method of the scattering problem to the method of the inverse spectral problem was performed. It permitted to investigate some nonlinear equations on the half axis (0 ≤ ∞ < ∞).
20#
發(fā)表于 2025-3-24 23:47:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 武平县| 日土县| 高邮市| 静乐县| 进贤县| 张家口市| 新余市| 长岭县| 汶上县| 民勤县| 江山市| 寿光市| 伊宁县| 汾阳市| 双柏县| 衡山县| 商洛市| 松原市| 合作市| 大丰市| 左贡县| 兴文县| 南城县| 静海县| 常宁市| 汪清县| 阜新| 陆丰市| 丰城市| 枞阳县| 宁晋县| 临西县| 江永县| 泽州县| 安平县| 潼南县| 吉隆县| 锦州市| 兴义市| 偏关县|