標題: Titlebook: On the Theory of Maass Wave Forms; Tobias Mühlenbruch,Wissam Raji Textbook 2020 Springer Nature Switzerland AG 2020 Modular forms.Maass wa [打印本頁] 作者: Fuctionary 時間: 2025-3-21 18:15
書目名稱On the Theory of Maass Wave Forms影響因子(影響力)
書目名稱On the Theory of Maass Wave Forms影響因子(影響力)學(xué)科排名
書目名稱On the Theory of Maass Wave Forms網(wǎng)絡(luò)公開度
書目名稱On the Theory of Maass Wave Forms網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱On the Theory of Maass Wave Forms被引頻次
書目名稱On the Theory of Maass Wave Forms被引頻次學(xué)科排名
書目名稱On the Theory of Maass Wave Forms年度引用
書目名稱On the Theory of Maass Wave Forms年度引用學(xué)科排名
書目名稱On the Theory of Maass Wave Forms讀者反饋
書目名稱On the Theory of Maass Wave Forms讀者反饋學(xué)科排名
作者: Definitive 時間: 2025-3-21 23:59 作者: 支柱 時間: 2025-3-22 02:22
0172-5939 review of introductory concepts through to cutting edge reseThis textbook provides a rigorous analytical treatment of the theory of Maass wave forms. Readers will find this unified presentation invaluable, as it treats Maass wave forms as the central area of interest. Subjects at the cutting edge of作者: 細頸瓶 時間: 2025-3-22 06:40 作者: Parley 時間: 2025-3-22 09:55
Period Polynomials, isomorphism theorem. We continue by describing the action of Hecke operators on period polynomials, following an approach by Choie and Zagier. We omit some of the proofs due to the abundance of references in the literature or, in many cases, because we prove their analogues in the Maass forms case.作者: BUDGE 時間: 2025-3-22 13:48
Textbook 2020t treats Maass wave forms as the central area of interest. Subjects at the cutting edge of research are explored in depth, such as Maass wave forms of real weight and the cohomology attached to Maass wave forms and transfer operators. Because Maass wave forms are given a deep exploration, this book 作者: bibliophile 時間: 2025-3-22 18:52 作者: maverick 時間: 2025-3-23 00:12 作者: 神化怪物 時間: 2025-3-23 05:11 作者: conservative 時間: 2025-3-23 09:30 作者: LINES 時間: 2025-3-23 11:32
Continued Fractions and the Transfer Operator Approach,cs and dynamical systems. He introduced the transfer operator a means to study dynamical zeta functions. A good introduction to chaotic systems, motivating and introducing dynamical zeta functions (in a general setting) is the web book. Our goal in this chapter is more specific. We focus solely on v作者: Interdict 時間: 2025-3-23 15:40 作者: FER 時間: 2025-3-23 18:17
Weak Harmonic Maass Wave Forms,In this chapter, we introduce the newly emerging concept of weakly harmonic Maass wave forms.作者: 孵卵器 時間: 2025-3-23 23:43
Families of Maass Cusp Forms, ,-Series, and Eichler Integrals,sult and use Maass operators to get a whole family of Maass cusp forms by starting with a “reference” Maass waveform of weight k and generate all possible images by repeatedly applying one of the Maass operators?作者: GILD 時間: 2025-3-24 04:46 作者: 大炮 時間: 2025-3-24 08:07
978-3-030-40477-2Springer Nature Switzerland AG 2020作者: 頭腦冷靜 時間: 2025-3-24 11:50
On the Theory of Maass Wave Forms978-3-030-40475-8Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: FUSC 時間: 2025-3-24 17:13 作者: nurture 時間: 2025-3-24 22:29
https://doi.org/10.1007/978-3-030-40475-8Modular forms; Maass wave forms; Eichler integrals; Eichler-Shimura isomorphism; L-series; Period problem作者: 者變 時間: 2025-3-25 02:03
0172-5939 ble online..On the Theory of Maass Wave Forms. is ideal for graduate students and researchers entering the area. Readers in mathematical physics and other related disciplines will find this a useful reference a978-3-030-40477-2978-3-030-40475-8Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: Rustproof 時間: 2025-3-25 03:57
Textbook 2020nic Maass wave forms. Engaging exercises appear throughout the book, with solutions available online..On the Theory of Maass Wave Forms. is ideal for graduate students and researchers entering the area. Readers in mathematical physics and other related disciplines will find this a useful reference a作者: Notify 時間: 2025-3-25 08:50
6樓作者: 違反 時間: 2025-3-25 13:55
7樓作者: ascetic 時間: 2025-3-25 18:07
7樓作者: 挫敗 時間: 2025-3-25 22:57
7樓作者: 蚊帳 時間: 2025-3-26 01:47
7樓作者: Myelin 時間: 2025-3-26 05:01
8樓作者: 透明 時間: 2025-3-26 08:49
8樓作者: Infuriate 時間: 2025-3-26 13:33
8樓作者: 笨重 時間: 2025-3-26 19:49
8樓作者: 有組織 時間: 2025-3-26 23:48
9樓作者: 骯臟 時間: 2025-3-27 01:48
9樓作者: 開始從未 時間: 2025-3-27 07:07
9樓作者: Decrepit 時間: 2025-3-27 13:05
9樓作者: Rankle 時間: 2025-3-27 15:06
10樓作者: 雄偉 時間: 2025-3-27 18:09
10樓作者: 合群 時間: 2025-3-27 22:43
10樓作者: 夸張 時間: 2025-3-28 06:03
10樓