派博傳思國(guó)際中心

標(biāo)題: Titlebook: Nonlinear Functional Analysis; A First Course S. Kesavan Book 2004 Hindustan Book Agency 2004 [打印本頁(yè)]

作者: 衰退    時(shí)間: 2025-3-21 18:28
書目名稱Nonlinear Functional Analysis影響因子(影響力)




書目名稱Nonlinear Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Functional Analysis被引頻次




書目名稱Nonlinear Functional Analysis被引頻次學(xué)科排名




書目名稱Nonlinear Functional Analysis年度引用




書目名稱Nonlinear Functional Analysis年度引用學(xué)科排名




書目名稱Nonlinear Functional Analysis讀者反饋




書目名稱Nonlinear Functional Analysis讀者反饋學(xué)科排名





作者: 流出    時(shí)間: 2025-3-21 21:37

作者: 過(guò)度    時(shí)間: 2025-3-22 01:11

作者: Abjure    時(shí)間: 2025-3-22 06:50
The Brouwer Degree,The topological degree is a useful tool in the study of existence of solutions to nonlinear equations. In this chapter, we will study the finite dimensional version of the degree, known as the Brouwer degree.
作者: 漂浮    時(shí)間: 2025-3-22 11:41
The Leray - Schauder Degree,Let . be a (real) Banach space. Henceforth, unless otherwise stated, all mappings of . into itself, or any other space, will be assumed to be continuous and mapping bounded sets into bounded sets.
作者: FACET    時(shí)間: 2025-3-22 13:21
Critical Points of Functionals,In the last section of the preceding chapter, we have already seen examples of how solutions to certain nonlinear equations could be obtained as critical points of appropriate functionals.
作者: 小母馬    時(shí)間: 2025-3-22 18:50
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/667511.jpg
作者: CBC471    時(shí)間: 2025-3-23 00:27
done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: Hyperopia    時(shí)間: 2025-3-23 02:41
S. Kesavan done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: outrage    時(shí)間: 2025-3-23 06:53

作者: 中國(guó)紀(jì)念碑    時(shí)間: 2025-3-23 11:55
Bifurcation Theory,o be answered satisfactorily, even when the spaces . and . are finite dimensional. Very often, we are led to study nonlinear equations dependent on a parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above e
作者: Nonporous    時(shí)間: 2025-3-23 17:12
Bifurcation Theory,parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above equation to possess a ‘nice’ family of solutions (often called the trivial solutions). However, for certain values of λ, new solutions may appear and hence we use the term ‘bifurcation’.
作者: 規(guī)章    時(shí)間: 2025-3-23 18:59

作者: invulnerable    時(shí)間: 2025-3-24 01:28

作者: oracle    時(shí)間: 2025-3-24 03:08

作者: 航海太平洋    時(shí)間: 2025-3-24 09:41
5樓
作者: 聯(lián)想記憶    時(shí)間: 2025-3-24 13:37
6樓
作者: 鄙視    時(shí)間: 2025-3-24 14:49
6樓
作者: consent    時(shí)間: 2025-3-24 22:25
6樓
作者: 委屈    時(shí)間: 2025-3-25 00:09
6樓
作者: 束縛    時(shí)間: 2025-3-25 05:46
7樓
作者: 浮雕    時(shí)間: 2025-3-25 08:41
7樓
作者: STYX    時(shí)間: 2025-3-25 15:04
7樓
作者: 歪曲道理    時(shí)間: 2025-3-25 16:54
7樓
作者: 圖畫文字    時(shí)間: 2025-3-25 21:23
8樓
作者: exophthalmos    時(shí)間: 2025-3-26 00:44
8樓
作者: 小隔間    時(shí)間: 2025-3-26 06:58
8樓
作者: 有特色    時(shí)間: 2025-3-26 10:51
8樓
作者: Urea508    時(shí)間: 2025-3-26 12:40
9樓
作者: 人造    時(shí)間: 2025-3-26 17:32
9樓
作者: 莎草    時(shí)間: 2025-3-27 00:20
9樓
作者: 嘲笑    時(shí)間: 2025-3-27 02:03
9樓
作者: 大漩渦    時(shí)間: 2025-3-27 07:27
10樓
作者: Modicum    時(shí)間: 2025-3-27 13:29
10樓
作者: 工作    時(shí)間: 2025-3-27 16:12
10樓
作者: 厚顏    時(shí)間: 2025-3-27 18:58
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
金阳县| 常熟市| 仁布县| 延边| 迁安市| 怀集县| 天柱县| 达州市| 都江堰市| 舞阳县| 武平县| 江阴市| 时尚| 河源市| 昌图县| 深水埗区| 西畴县| 韶山市| 连山| 汝城县| 军事| 龙里县| 滨海县| 巴马| 尉犁县| 临武县| 沙坪坝区| 伊春市| 五华县| 清新县| 兖州市| 河北区| 新龙县| 稷山县| 鹤庆县| 呈贡县| 西乡县| 嵊泗县| 微山县| 新绛县| 梁山县|