派博傳思國(guó)際中心

標(biāo)題: Titlebook: Macdonald Polynomials; Commuting Family of Masatoshi Noumi Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lice [打印本頁(yè)]

作者: 雜技演員    時(shí)間: 2025-3-21 17:45
書目名稱Macdonald Polynomials影響因子(影響力)




書目名稱Macdonald Polynomials影響因子(影響力)學(xué)科排名




書目名稱Macdonald Polynomials網(wǎng)絡(luò)公開(kāi)度




書目名稱Macdonald Polynomials網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Macdonald Polynomials被引頻次




書目名稱Macdonald Polynomials被引頻次學(xué)科排名




書目名稱Macdonald Polynomials年度引用




書目名稱Macdonald Polynomials年度引用學(xué)科排名




書目名稱Macdonald Polynomials讀者反饋




書目名稱Macdonald Polynomials讀者反饋學(xué)科排名





作者: 殘暴    時(shí)間: 2025-3-21 22:53

作者: 物質(zhì)    時(shí)間: 2025-3-22 01:15

作者: 過(guò)時(shí)    時(shí)間: 2025-3-22 07:50

作者: 規(guī)范就好    時(shí)間: 2025-3-22 09:50
Preliminaries on Symmetric Functions,In this section, we recall some basic material on symmetric functions as preliminaries to the theory of Schur functions and Macdonald polynomials.
作者: 高深莫測(cè)    時(shí)間: 2025-3-22 16:33
,Macdonald Polynomials: Definition and?Examples,The Macdonald polynomials are defined as eigenfunctions of the Macdonald–Ruijsenaars .-difference operator acting on the ring of symmetric polynomials. We also investigate some special cases where Macdonald polynomials can be explicitly described, including the case of single rows.
作者: 嚴(yán)厲批評(píng)    時(shí)間: 2025-3-22 21:01
,Orthogonality and?Higher-Order ,-Difference Operators,We show that the Macdonald polynomials satisfy the orthogonality relation with respect to a certain scalar product on the ring of symmetric polynomials. We also explain how this orthogonality is related with the existence of commuting family of higher-order .-difference operators for which Macdonald polynomials are joint eigenfunctions.
作者: 使高興    時(shí)間: 2025-3-23 00:40
https://doi.org/10.1007/978-981-99-4587-0symmetric functions; q-difference equation; q-orthogonal polynomial; quantum integrable system; Macdonal
作者: 停止償付    時(shí)間: 2025-3-23 02:12

作者: 美食家    時(shí)間: 2025-3-23 06:26

作者: Ptsd429    時(shí)間: 2025-3-23 12:25
,Self-duality, Pieri Formula and?Cauchy Formulas,s chapter, we explain how the Pieri formulas (multiplication formula by .) are obtained from the action of Macdonald–Ruijsenaars operators . through the self-duality. We also investigate the Cauchy formula and the dual Cauchy formula for Macdonald polynomials and the relevant kernel identities.
作者: 外星人    時(shí)間: 2025-3-23 16:38
,Affine Hecke Algebra and?,-Dunkl Operators (Overview),e .. (For a more comprehensive exposition, see Macdonald [22].) We explain how the commuting family of Macdonald–Ruijsenaars operators arise naturally in the framework of affine Hecke algebras. We also show how the self-duality of Macdonald polynomials can be established by means of the Cherednik involution of the double affine Hecke algebra.
作者: 干涉    時(shí)間: 2025-3-23 18:55
2197-1757 that are easily accessible to readers with a background in This book is a volume of the Springer Briefs in Mathematical Physics and serves as an introductory textbook on the theory of Macdonald polynomials. It is based on a series of online lectures given by the author at the Royal Institute of Tec
作者: 飛行員    時(shí)間: 2025-3-24 02:09
,Littlewood–Richardson Coefficients and?Branching Coefficients, types of coefficients are intimately related to each other through the Cauchy formula for Macdonald polynomials. We also present a commuting family of .-difference operators of row type for which Macdonald polynomials are joint eigenfunctions, and explain how they are related to the Pieri formula of row type.
作者: 聯(lián)想    時(shí)間: 2025-3-24 03:48
Book 2023 is based on a series of online lectures given by the author at the Royal Institute of Technology (KTH), Stockholm, in February and March 2021..?.Macdonald polynomials are a class of symmetric orthogonal polynomials in many variables. They include important classes of special functions such as Schur
作者: Cougar    時(shí)間: 2025-3-24 07:43
Book 2023ynomials are explained, such as orthogonality, evaluation formulas, and self-duality, with emphasis on the roles of commuting?.q.-difference operators. The author also explains how Macdonald polynomials are formulated in the framework of affine Hecke algebras and?.q.-Dunkl operators..
作者: 可行    時(shí)間: 2025-3-24 12:54

作者: arrhythmic    時(shí)間: 2025-3-24 16:36

作者: 管理員    時(shí)間: 2025-3-24 20:34
Schur Functions,e Schur functions, one by combinatorics of semi-standard tableaux, and the other in terms of ratios of Vandermonde-type determinants. Then we establish the equivalence of the two definitions by means of the Cauchy formula. It should be noted that the theory of Macdonald polynomials is modeled in man
作者: Abduct    時(shí)間: 2025-3-25 02:11

作者: 編輯才信任    時(shí)間: 2025-3-25 06:20

作者: 易改變    時(shí)間: 2025-3-25 10:22

作者: preeclampsia    時(shí)間: 2025-3-25 14:32
6樓
作者: 空洞    時(shí)間: 2025-3-25 17:29
6樓
作者: LAY    時(shí)間: 2025-3-25 22:29
6樓
作者: Eructation    時(shí)間: 2025-3-26 03:49
7樓
作者: 壓碎    時(shí)間: 2025-3-26 08:18
7樓
作者: 蜈蚣    時(shí)間: 2025-3-26 08:33
7樓
作者: COKE    時(shí)間: 2025-3-26 15:49
7樓
作者: Incommensurate    時(shí)間: 2025-3-26 20:01
8樓
作者: Junction    時(shí)間: 2025-3-27 00:17
8樓
作者: MERIT    時(shí)間: 2025-3-27 03:42
8樓
作者: 模范    時(shí)間: 2025-3-27 07:12
8樓
作者: Figate    時(shí)間: 2025-3-27 11:00
9樓
作者: 無(wú)效    時(shí)間: 2025-3-27 17:28
9樓
作者: 我邪惡    時(shí)間: 2025-3-27 18:28
9樓
作者: Irrepressible    時(shí)間: 2025-3-28 00:28
9樓
作者: 繁殖    時(shí)間: 2025-3-28 04:10
10樓
作者: 極為憤怒    時(shí)間: 2025-3-28 08:46
10樓
作者: 的是兄弟    時(shí)間: 2025-3-28 12:50
10樓
作者: 大酒杯    時(shí)間: 2025-3-28 15:10
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
林州市| 香格里拉县| 逊克县| 灵丘县| 营山县| 佛冈县| 大足县| 阿鲁科尔沁旗| 莫力| 新竹县| 罗定市| 大埔区| 江源县| 麻城市| 柯坪县| 苍南县| 科尔| 手游| 萝北县| 兖州市| 南涧| 七台河市| 祁东县| 九龙县| 怀柔区| 金昌市| 宕昌县| 沙田区| 财经| 乐都县| 东乡族自治县| 铜梁县| 建瓯市| 安化县| 天等县| 巴中市| 民权县| 庆云县| 江山市| 阜宁县| 邢台县|