標(biāo)題: Titlebook: Interpretable Artificial Intelligence: A Perspective of Granular Computing; Witold Pedrycz,Shyi-Ming Chen Book 2021 The Editor(s) (if appl [打印本頁] 作者: Nixon 時(shí)間: 2025-3-21 18:04
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing影響因子(影響力)
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing影響因子(影響力)學(xué)科排名
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing網(wǎng)絡(luò)公開度
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing被引頻次
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing被引頻次學(xué)科排名
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing年度引用
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing年度引用學(xué)科排名
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing讀者反饋
書目名稱Interpretable Artificial Intelligence: A Perspective of Granular Computing讀者反饋學(xué)科排名
作者: Galactogogue 時(shí)間: 2025-3-21 23:57
Book 2021g the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapt作者: bifurcate 時(shí)間: 2025-3-22 02:45
Book 2021 knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.作者: 休閑 時(shí)間: 2025-3-22 04:55 作者: 是限制 時(shí)間: 2025-3-22 11:51
MiBeX: Malware-Inserted Benign Datasets for Explainable Machine Learning, as Image?classifier achieves a training accuracy of 98.94% and a validation accuracy of 93.83%, showing that the method can produce valid datasets for use with machine learning. Gradient-based saliency mapping is then applied to the trained classifier to generate heat-map explanations of the network output.作者: fabricate 時(shí)間: 2025-3-22 16:28
1860-949X ytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.978-3-030-64951-7978-3-030-64949-4Series ISSN 1860-949X Series E-ISSN 1860-9503 作者: 道學(xué)氣 時(shí)間: 2025-3-22 18:43
Interpretable Artificial Intelligence: A Perspective of Granular Computing作者: 糾纏 時(shí)間: 2025-3-22 23:23 作者: 受人支配 時(shí)間: 2025-3-23 05:20 作者: Abrade 時(shí)間: 2025-3-23 07:46 作者: 慷慨援助 時(shí)間: 2025-3-23 12:12 作者: 帶傷害 時(shí)間: 2025-3-23 14:39
Preeti Mukherjee,Mainak Pal,Lidia Ghosh,Amit Konar作者: 切掉 時(shí)間: 2025-3-23 20:52 作者: 說笑 時(shí)間: 2025-3-23 23:42
Bo Sunier ausgewertete Revision der Tiefseedatierung erm?glicht erstmals eine Einsicht in die realen Dimensionen quart?rer Zeitabschnitte. Es ergibt sich eine fast lückenlose übersicht über gro?e und kleine, bekannte und unbekannte Glaziale und Interglaziale und deren Einflu? auf Landschaft und Lebensformen.978-3-642-63706-3978-3-642-58744-3作者: 組成 時(shí)間: 2025-3-24 06:11
Janosch Henze,Bernhard Sickier ausgewertete Revision der Tiefseedatierung erm?glicht erstmals eine Einsicht in die realen Dimensionen quart?rer Zeitabschnitte. Es ergibt sich eine fast lückenlose übersicht über gro?e und kleine, bekannte und unbekannte Glaziale und Interglaziale und deren Einflu? auf Landschaft und Lebensformen.978-3-642-63706-3978-3-642-58744-3作者: 裝勇敢地做 時(shí)間: 2025-3-24 08:22 作者: 表皮 時(shí)間: 2025-3-24 12:11
Wayne Stegner,Tyler Westland,David Kapp,Temesguen Kebede,Rashmi Jha?ltigung durch alle Verfahren einschlie?lich Speicherung und jede übertragung auf Papier, Transparente, Filme, B?nder, Platten und andere Medien. Satz: Clausen & Bosse, Leck/Schleswig ISBN 978-3-531-22015-4 INHALTSVERZEICHNIS EINFüHRENDE BEMERKUNGEN 9 1. ERSTE INFORMATIONEN: SOZIOLOGIE ALS LEHRFACH IN DEUTSCH978-3-531-22015-4978-3-322-88757-3作者: dysphagia 時(shí)間: 2025-3-24 17:43 作者: 虛假 時(shí)間: 2025-3-24 22:04 作者: 縮短 時(shí)間: 2025-3-25 00:03 作者: AUGUR 時(shí)間: 2025-3-25 03:53
Visualizing the Behavior of Convolutional Neural Networks for Time Series Forecasting,isualization?techniques to make them more interpretable. In this chapter, we adapt image visualization?algorithms to time series problems, allowing us to build granular, intuitively interpretable feature hierarchies to make a time series forecast as understandable as an image recognition task. We do作者: CHAR 時(shí)間: 2025-3-25 09:10
Beyond Deep Event Prediction: Deep Event Understanding Based on Explainable Artificial Intelligencecial Intelligence (XAI) driven by the paradigm of Granular Computing (GrC). It semantically models knowledge by imitating human thinking which can be understood by decision-makers. DUE offers a level of understanding that is both argumentative and explainable for critical applications and systems. D作者: 得罪人 時(shí)間: 2025-3-25 14:05 作者: FADE 時(shí)間: 2025-3-25 19:22
Factual and Counterfactual Explanation of Fuzzy Information Granules,y the rest of classes are not selected. Thus, endowing FURIA rules with the capability to generate a combination of both factual and counterfactual explanations is likely to make them more trustworthy. We illustrate how to build self-explaining FURIA classifiers in two practical use cases regarding 作者: babble 時(shí)間: 2025-3-25 23:55
Survey of Explainable Machine Learning with Visual and Granular Methods Beyond Quasi-Explanations,g research focus. While multiple efficient methods for visual representation of high-dimensional data exist, the loss of interpretable information, occlusion, and clutter continue to be a challenge, which lead to quasi-explanations. This chapter starts with the motivation and the definitions of diff作者: abnegate 時(shí)間: 2025-3-26 02:05 作者: ingenue 時(shí)間: 2025-3-26 04:25 作者: BOON 時(shí)間: 2025-3-26 09:55 作者: 殘暴 時(shí)間: 2025-3-26 13:58 作者: emission 時(shí)間: 2025-3-26 19:14 作者: Definitive 時(shí)間: 2025-3-27 00:44
Interpretable Artificial Intelligence: A Perspective of Granular Computing978-3-030-64949-4Series ISSN 1860-949X Series E-ISSN 1860-9503 作者: Guileless 時(shí)間: 2025-3-27 03:00
Witold Pedrycz,Shyi-Ming ChenHighlights recent research on interpretable Artificial Intelligence.Focuses on a perspective of Granular Computing.Written by experts in the field作者: placebo 時(shí)間: 2025-3-27 07:16 作者: 卜聞 時(shí)間: 2025-3-27 12:45
https://doi.org/10.1007/978-3-030-64949-4Computational Intelligence; Artificial Intelligence; AI; Granular Computing; Interpretable Artificial In作者: Harass 時(shí)間: 2025-3-27 15:32 作者: Invigorate 時(shí)間: 2025-3-27 20:20
Bo SunEinstieg in das Thema ebenso geeignet wie zur WissensvertiefDas Wissen über das Eiszeitalter ver?ndert sich rasch. Neue Hinweise liefern u.a. Tiefseesedimente, die Isotopentechnik und die Erkundung heutiger kalter Gebiete der Erde, wobei Eiskernbohrungen in Gr?nland und der Antarktis für die jüngere作者: 饒舌的人 時(shí)間: 2025-3-27 22:45 作者: 散步 時(shí)間: 2025-3-28 04:52 作者: ALE 時(shí)間: 2025-3-28 09:44 作者: 強(qiáng)制性 時(shí)間: 2025-3-28 13:40
Aleksandra Revina,Krisztian Buza,Vera G. Meisteren Abschnitt dieses Buches über soziologisches Denken gesagt wurde, nur wenig unmittelbar widerspiegeln. Weder bewegt sich der Lehrende in seinem Beitrag zum Lehrangebot stets auf den H?hen soziologischen Denkens, noch vermag der Lernende an jeder einzelnen der ihm abverlangten oder der ihm interess作者: 不可接觸 時(shí)間: 2025-3-28 15:19
Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novge these process specific fine-granular data, process mining has recently emerged as a promising research discipline. As an important branch of process mining, predictive business process management, pursues the objective to generate forward-looking, predictive insights to shape business processes. 作者: 荒唐 時(shí)間: 2025-3-28 19:53 作者: 粉筆 時(shí)間: 2025-3-29 02:48
Visualizing the Behavior of Convolutional Neural Networks for Time Series Forecasting,of algorithms in applications such as image recognition and classification, 2D and 3D pose detection, natural language processing, and time series forecasting. Especially in image classification and recognition, so-called Convolutional Neural Network (CNN) have gained high interest as they can reach作者: 解脫 時(shí)間: 2025-3-29 03:43
Beyond Deep Event Prediction: Deep Event Understanding Based on Explainable Artificial Intelligencegent-based approaches, such as neural networks and deep learning, only aim to summarize and predict events extracted from raw data rather than to understand them. This latter feature is especially important for critical events that are unpredictable and complex with the potential to cause serious da作者: CHYME 時(shí)間: 2025-3-29 08:06
Interpretation of SVM to Build an Explainable AI via Granular Computing,ever, this accuracy comes with a lack of explainability. This especially becomes a serious problem when it comes to analyzing and making diagnosis with medical data. These ML models are usually built by expert coders without any incorporation or feedback of contextual information from subject matter作者: Lucubrate 時(shí)間: 2025-3-29 12:49 作者: Epithelium 時(shí)間: 2025-3-29 15:59
Transparency and Granularity in the SP Theory of Intelligence and Its Realisation in the SP Compute application. The chapter describes how transparency?in the workings and output of the SP Computer Model?may be achieved via three routes: (1) the program provides a very full audit trail for such processes as recognition, reasoning, analysis of language, and so on. There is also an explicit audit t作者: FICE 時(shí)間: 2025-3-29 21:56 作者: Insul島 時(shí)間: 2025-3-30 00:01