標(biāo)題: Titlebook: Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography; Efficient Modular Ex Satyanarayana Vollala,N. Ramasubramanian, [打印本頁(yè)] 作者: 他剪短 時(shí)間: 2025-3-21 19:23
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography影響因子(影響力)
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography影響因子(影響力)學(xué)科排名
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography被引頻次
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography被引頻次學(xué)科排名
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography年度引用
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography年度引用學(xué)科排名
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography讀者反饋
書(shū)目名稱(chēng)Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography讀者反饋學(xué)科排名
作者: averse 時(shí)間: 2025-3-21 20:41 作者: CHURL 時(shí)間: 2025-3-22 01:03 作者: foliage 時(shí)間: 2025-3-22 06:17 作者: Asparagus 時(shí)間: 2025-3-22 09:52 作者: 過(guò)剩 時(shí)間: 2025-3-22 13:35
Review of Hardware Techniques for Improving Performance of Modular Exponentiation also helps in reducing the cost. The hardware techniques greatly affect the execution of an algorithm. The hardware techniques used for the implementation of the core operations of the PKC are discussed in this chapter.作者: 過(guò)剩 時(shí)間: 2025-3-22 18:06 作者: certitude 時(shí)間: 2025-3-22 22:18 作者: semiskilled 時(shí)間: 2025-3-23 02:16
https://doi.org/10.1007/978-3-030-74524-0Public-Key Cryptography; Cyber Security; Energy Efficient Hardware; Information Security; Modular Expone作者: RADE 時(shí)間: 2025-3-23 08:52 作者: convert 時(shí)間: 2025-3-23 12:17 作者: 連系 時(shí)間: 2025-3-23 17:52 作者: 使成整體 時(shí)間: 2025-3-23 21:47 作者: MUMP 時(shí)間: 2025-3-24 01:23
Katsuhiko Ariga,Toyoki Kunitakey modulus operation over exponentiation operation. Modulus operation reduces the size of intermediate and final results but increases the division operation overhead. This . has significant applications in Cryptosystem. In this chapter four modular exponential techniques will be discussed.作者: Monocle 時(shí)間: 2025-3-24 04:19 作者: myopia 時(shí)間: 2025-3-24 07:50
Supramolecular Structure and Function 10 also helps in reducing the cost. The hardware techniques greatly affect the execution of an algorithm. The hardware techniques used for the implementation of the core operations of the PKC are discussed in this chapter.作者: macrophage 時(shí)間: 2025-3-24 14:31 作者: Permanent 時(shí)間: 2025-3-24 17:52 作者: 刪除 時(shí)間: 2025-3-24 20:17 作者: 不如樂(lè)死去 時(shí)間: 2025-3-25 01:44 作者: Cpap155 時(shí)間: 2025-3-25 05:01
https://doi.org/10.1007/978-3-319-01360-2 given BFW techniques have been estimated with respect to energy, power and throughput. The performance of PKCs can be enhanced either by hardware or by software approaches. The software approaches are simple and less complex for maintaining, on the other hand, hardware approaches are more secure wh作者: GRIN 時(shí)間: 2025-3-25 11:00
https://doi.org/10.1007/978-981-16-8229-2 simultaneously, for achieving higher throughput with a constant frequency. As we know that, modular exponentiation is a series of modular multiplications and in order to achieve better performance, we need an efficient implementation of modular multiplication. The modular multiplication has costly 作者: 失望昨天 時(shí)間: 2025-3-25 13:45 作者: 法官 時(shí)間: 2025-3-25 18:01 作者: 使饑餓 時(shí)間: 2025-3-25 22:39 作者: 古文字學(xué) 時(shí)間: 2025-3-26 03:35 作者: Legion 時(shí)間: 2025-3-26 07:13
Modular Exponential Techniquesy modulus operation over exponentiation operation. Modulus operation reduces the size of intermediate and final results but increases the division operation overhead. This . has significant applications in Cryptosystem. In this chapter four modular exponential techniques will be discussed.作者: inspired 時(shí)間: 2025-3-26 11:47
Review of Algorithmic Techniques for Improving the Performance of Modular Exponentiationodular exponentiation. If we wish to optimize the time complexity of the PKC, it is essential to develop a transformation algorithm that minimizes the required number of modular multiplications. If we succeed in minimizing the number of required modular multiplications it will result in the reductio作者: 國(guó)家明智 時(shí)間: 2025-3-26 14:04 作者: Abominate 時(shí)間: 2025-3-26 19:28
Introduction to Montgomery MultiplicationSA algorithm and Diffie–Hellman algorithm. These algorithms are very much important to attain better information security over a public network. Cryptosystems have an important step of key exchange for which confidentiality is achieved by modular exponentiation. The modular exponentiation problem is作者: thwart 時(shí)間: 2025-3-26 23:31 作者: 收到 時(shí)間: 2025-3-27 03:52 作者: predict 時(shí)間: 2025-3-27 06:51 作者: 有角 時(shí)間: 2025-3-27 09:48 作者: 諷刺 時(shí)間: 2025-3-27 16:54 作者: Lignans 時(shí)間: 2025-3-27 18:11 作者: Conscientious 時(shí)間: 2025-3-27 22:43 作者: Needlework 時(shí)間: 2025-3-28 05:14
Energy-Efficient Modular Exponential Techniques for Public-Key CryptographyEfficient Modular Ex作者: 單調(diào)女 時(shí)間: 2025-3-28 06:16 作者: incarcerate 時(shí)間: 2025-3-28 11:07 作者: MEEK 時(shí)間: 2025-3-28 17:18
https://doi.org/10.1007/978-3-662-04223-6ion. This chapter discusses the techniques of reducing the number of the required modular multiplications by Bit Forwarding (BFW) techniques and how they can be implemented. The Montgomery multiplication algorithm is modified according to the requirements of BFW techniques. There are two varieties o作者: 戲法 時(shí)間: 2025-3-28 20:47
https://doi.org/10.1007/978-981-16-8229-2erformance. A dual-core RSA processor is illustrated in this chapter. In addition to this, a hardware scheduler, that is required for the simultaneous execution of the multiple cryptographic modules is also illustrated. This hardware scheduler helps to achieve higher throughput with constant clock f作者: arbovirus 時(shí)間: 2025-3-29 01:51
Bit Forwarding Techniques for Efficient Modular Exponentiationion. This chapter discusses the techniques of reducing the number of the required modular multiplications by Bit Forwarding (BFW) techniques and how they can be implemented. The Montgomery multiplication algorithm is modified according to the requirements of BFW techniques. There are two varieties o作者: 四目在模仿 時(shí)間: 2025-3-29 06:53
RSA Processor for Concurrent Cryptographic Transformationserformance. A dual-core RSA processor is illustrated in this chapter. In addition to this, a hardware scheduler, that is required for the simultaneous execution of the multiple cryptographic modules is also illustrated. This hardware scheduler helps to achieve higher throughput with constant clock f作者: Arroyo 時(shí)間: 2025-3-29 07:49
Book 2021e algorithm, and the Digital Signature Standard, use modular exponentiation extensively. The performance of all these applications strongly depends on the efficient implementation of modular exponentiation and modular multiplication. Since 1984, when Montgomery first introduced a method to evaluate 作者: 焦慮 時(shí)間: 2025-3-29 11:32 作者: faultfinder 時(shí)間: 2025-3-29 16:40
M. Ali Aboudzadeh,Shaghayegh Hamzehlouter will enable you to understand the basics of the security and how we can efficiently implement cryptographic techniques. This chapter also discusses the various components required for the software & hardware implementation of a cryptographic modules.作者: 愛(ài)管閑事 時(shí)間: 2025-3-29 23:22
Supramolecular Structure and Functionn of clock cycles and energy with increased throughput i.e., the overall system will be more energy-efficient. Performance and a higher level of security for cryptographic techniques can be achieved by hardware means and by software means. Most of the existing works are focused on hardware, as it offers more security.