派博傳思國(guó)際中心

標(biāo)題: Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und [打印本頁(yè)]

作者: 雜技演員    時(shí)間: 2025-3-21 18:55
書目名稱Dynamics of Circle Mappings影響因子(影響力)




書目名稱Dynamics of Circle Mappings影響因子(影響力)學(xué)科排名




書目名稱Dynamics of Circle Mappings網(wǎng)絡(luò)公開(kāi)度




書目名稱Dynamics of Circle Mappings網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Dynamics of Circle Mappings被引頻次




書目名稱Dynamics of Circle Mappings被引頻次學(xué)科排名




書目名稱Dynamics of Circle Mappings年度引用




書目名稱Dynamics of Circle Mappings年度引用學(xué)科排名




書目名稱Dynamics of Circle Mappings讀者反饋




書目名稱Dynamics of Circle Mappings讀者反饋學(xué)科排名





作者: Osteoporosis    時(shí)間: 2025-3-21 22:38

作者: 四目在模仿    時(shí)間: 2025-3-22 04:09
Smooth Conjugacies to Rotationstion. In other words, the . orbit structure of such a diffeomorphism is indistinguishable from that of a rigid rotation. The relative order of points of a given orbit on the circle is the same no matter which orbit we take; everything is determined by a single invariant, the rotation number.
作者: Physiatrist    時(shí)間: 2025-3-22 05:04

作者: Range-Of-Motion    時(shí)間: 2025-3-22 10:05

作者: Blanch    時(shí)間: 2025-3-22 16:50

作者: Blanch    時(shí)間: 2025-3-22 18:40

作者: ACRID    時(shí)間: 2025-3-22 22:54
Exponential Convergence: The Smooth Caseanswer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
作者: ambivalence    時(shí)間: 2025-3-23 01:53
We will study the orbit structure of orientation-preserving homeomorphisms of the unit circle. As is customary, we will identify the boundary of the unit disk . with the one-dimensional torus ..
作者: HALL    時(shí)間: 2025-3-23 09:35
Tingting Zhang,Lijun Xie,Xianzheng ZengThis chapter is to be regarded as an intermezzo. We want to move on to the study of homeomorphisms of the circle having one or more critical points.
作者: Esalate    時(shí)間: 2025-3-23 10:25

作者: MAL    時(shí)間: 2025-3-23 14:21
3-Dimensional Process SimulationIn addition to the real bounds, another important preliminary step towards establishing the . of multicritical circle maps (to be examined in Sect. .) is to answer the question: When are two topologically conjugate multicritical circle maps . conjugate? This question pertains to the general study of . of one-dimensional systems.
作者: 極肥胖    時(shí)間: 2025-3-23 19:42

作者: fixed-joint    時(shí)間: 2025-3-24 01:05

作者: 易達(dá)到    時(shí)間: 2025-3-24 03:26
,Kenngr??en des baulichen W?rmeschutzes,In recent years, the main new tool introduced in dynamics to understand the fine-scale structure of a low-dimensional system is ..
作者: 難解    時(shí)間: 2025-3-24 08:36

作者: Gleason-score    時(shí)間: 2025-3-24 14:13

作者: 的’    時(shí)間: 2025-3-24 15:26

作者: cortisol    時(shí)間: 2025-3-24 21:14
Homeomorphisms of the CircleWe will study the orbit structure of orientation-preserving homeomorphisms of the unit circle. As is customary, we will identify the boundary of the unit disk . with the one-dimensional torus ..
作者: 群居男女    時(shí)間: 2025-3-24 23:35

作者: resuscitation    時(shí)間: 2025-3-25 06:30

作者: 蓋他為秘密    時(shí)間: 2025-3-25 10:53
Quasisymmetric RigidityIn addition to the real bounds, another important preliminary step towards establishing the . of multicritical circle maps (to be examined in Sect. .) is to answer the question: When are two topologically conjugate multicritical circle maps . conjugate? This question pertains to the general study of . of one-dimensional systems.
作者: PAGAN    時(shí)間: 2025-3-25 15:37
Ergodic AspectsIn this chapter we examine multicritical circle maps from the point of view of measurable dynamics. We have seen in Theorem . that every homeomorphism of the circle without periodic points is uniquely ergodic. In particular, every multicritical circle map . with irrational rotation number is uniquely ergodic.
作者: zonules    時(shí)間: 2025-3-25 17:11

作者: 粗糙    時(shí)間: 2025-3-25 23:23

作者: Circumscribe    時(shí)間: 2025-3-26 00:15
Quasiconformal DeformationsThis chapter should be regarded as a second intermezzo (after Chap. .). Here we briefly review some standard facts about the theory of quasiconformal mappings in the complex plane and the Riemann sphere. In such a short exposition we can hardly do justice to this beautiful and powerful theory.
作者: 領(lǐng)巾    時(shí)間: 2025-3-26 05:15

作者: 悲觀    時(shí)間: 2025-3-26 12:12
Renormalization: Holomorphic MethodsIn this final chapter we will survey some of the complex-analytic ideas that play a decisive role in the theory of (multi)critical circle maps.
作者: entrance    時(shí)間: 2025-3-26 14:49

作者: Offset    時(shí)間: 2025-3-26 17:39

作者: concise    時(shí)間: 2025-3-26 23:52
ts look exactly the same. There are only two possible behaviours for such orbits. Either they are all dense on the circle, or else they are all periodic with the same period. This dichotomy can be read off from the angle by which points on the circle are rotated. The ratio of this angle to a full turn is called the ..
作者: MOAN    時(shí)間: 2025-3-27 04:53

作者: Counteract    時(shí)間: 2025-3-27 08:47

作者: 稱贊    時(shí)間: 2025-3-27 12:46
https://doi.org/10.1007/978-3-8274-2908-7answer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
作者: NAVEN    時(shí)間: 2025-3-27 16:05

作者: 懦夫    時(shí)間: 2025-3-27 21:19
Lecture Notes in Electrical Engineering a seminal paper published in 1932, Denjoy (J. Math. Pure et Appl 11:333–375, 1932) proved that every sufficiently smooth circle diffeomorphism . without periodic points is topologically equivalent to an irrational rotation. Here, the expression “sufficiently smooth” means that . is . and . is a fun
作者: 灰心喪氣    時(shí)間: 2025-3-27 23:10

作者: 公式    時(shí)間: 2025-3-28 02:57

作者: In-Situ    時(shí)間: 2025-3-28 06:58
Edson de Faria,Pablo GuarinoExplores recent developments of invertible circle maps in one-dimensional dynamics.Focuses on global diffeomorphisms and smooth homeomorphisms with critical points.Aimed at graduate students and young
作者: famine    時(shí)間: 2025-3-28 12:07
IMPA Monographshttp://image.papertrans.cn/e/image/284851.jpg
作者: 反復(fù)拉緊    時(shí)間: 2025-3-28 17:16

作者: 有權(quán)    時(shí)間: 2025-3-28 21:47

作者: CONE    時(shí)間: 2025-3-29 01:39

作者: 煉油廠    時(shí)間: 2025-3-29 07:05
Textbook 2024Latest editions on two main classes of invertible dynamical systems on the circle: global diffeomorphisms and smooth homeomorphisms with critical points. The latter is the book‘s core, reflecting the authors‘ recent research interests..Organized into four parts and 14 chapters, the content covers rigid rotations,
作者: Epithelium    時(shí)間: 2025-3-29 10:53
9樓
作者: 令人作嘔    時(shí)間: 2025-3-29 11:54
9樓
作者: aptitude    時(shí)間: 2025-3-29 18:15
9樓
作者: 令人苦惱    時(shí)間: 2025-3-29 22:59
10樓
作者: 卵石    時(shí)間: 2025-3-30 02:19
10樓
作者: Abnormal    時(shí)間: 2025-3-30 06:26
10樓
作者: 形上升才刺激    時(shí)間: 2025-3-30 09:43
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
武汉市| 福州市| 陈巴尔虎旗| 灵宝市| 灵台县| 顺平县| 崇信县| 开江县| 平泉县| 科技| 且末县| 会理县| 明光市| 化隆| 红安县| 乌拉特前旗| 克山县| 镇远县| 龙江县| 中牟县| 历史| 临沭县| 台东市| 盘山县| 潼南县| 本溪| 玛纳斯县| 广水市| 塔城市| 淄博市| 百色市| 和政县| 灯塔市| 体育| 隆子县| 包头市| 东宁县| 峡江县| 德保县| 浦县| 堆龙德庆县|