派博傳思國際中心

標(biāo)題: Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho [打印本頁]

作者: Carter    時(shí)間: 2025-3-21 19:08
書目名稱Divergent Series, Summability and Resurgence III影響因子(影響力)




書目名稱Divergent Series, Summability and Resurgence III影響因子(影響力)學(xué)科排名




書目名稱Divergent Series, Summability and Resurgence III網(wǎng)絡(luò)公開度




書目名稱Divergent Series, Summability and Resurgence III網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Divergent Series, Summability and Resurgence III被引頻次




書目名稱Divergent Series, Summability and Resurgence III被引頻次學(xué)科排名




書目名稱Divergent Series, Summability and Resurgence III年度引用




書目名稱Divergent Series, Summability and Resurgence III年度引用學(xué)科排名




書目名稱Divergent Series, Summability and Resurgence III讀者反饋




書目名稱Divergent Series, Summability and Resurgence III讀者反饋學(xué)科排名





作者: Melanocytes    時(shí)間: 2025-3-21 23:04
,The First Painlevé Equation,é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
作者: Adherent    時(shí)間: 2025-3-22 01:32
,Tritruncated Solutions For The First Painlevé Equation,ect. 2.6. This example will introduce the reader to common reasonings in resurgence theory. We construct a prepared form associated with the first Painlevé equation (Sec 3.1). This prepared ODE has a unique formal solution from which we deduce the existence of truncated solutions by application of t
作者: DUST    時(shí)間: 2025-3-22 08:34

作者: enormous    時(shí)間: 2025-3-22 09:57
,Transseries And Formal Integral For The First Painlevé Equation,th the first Painlevé equation, which will be used later on to get the truncated solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé equation and, equivalently, the canonical normal form eq
作者: 天然熱噴泉    時(shí)間: 2025-3-22 14:01
,Truncated Solutions For The First Painlevé Equation,, we show that formal series components of the formal integral are 1-Gevrey and their minors have analytic properties quite similar to those for the minor of the formal series solution we started with (Sect. 6.1). We then make a focus on the transseries solution and we show their Borel-Laplace summa
作者: 天然熱噴泉    時(shí)間: 2025-3-22 21:01

作者: Derogate    時(shí)間: 2025-3-22 23:21
,Resurgent Structure For The First Painlevé Equation,t structure is given in Sect. 8.1. Its proof is given using the so-called bridge equation (Sect. 8.4), after some preliminaries (Sect. 8.3). The nonlinear Stokes phenomena are briefly analyzed in Sect. 8.2.
作者: irritation    時(shí)間: 2025-3-23 03:48

作者: 陰謀    時(shí)間: 2025-3-23 08:47

作者: Maximize    時(shí)間: 2025-3-23 09:50

作者: Spinal-Fusion    時(shí)間: 2025-3-23 17:16
Some Elements about Ordinary Differential Equations,e fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
作者: iodides    時(shí)間: 2025-3-23 18:57

作者: NEX    時(shí)間: 2025-3-23 23:55

作者: Obliterate    時(shí)間: 2025-3-24 05:25
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/282070.jpg
作者: 助記    時(shí)間: 2025-3-24 09:02

作者: 獨(dú)特性    時(shí)間: 2025-3-24 14:15
Tipps und Tricks für den Sportmedizinere fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
作者: 誤傳    時(shí)間: 2025-3-24 18:17

作者: Frisky    時(shí)間: 2025-3-24 22:41

作者: Cloudburst    時(shí)間: 2025-3-25 00:07
https://doi.org/10.1007/978-3-642-55794-1é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
作者: 同步左右    時(shí)間: 2025-3-25 04:57

作者: Commonplace    時(shí)間: 2025-3-25 10:03
https://doi.org/10.1007/978-3-642-55794-1a function holomorphic on a cut plane. We further analyze the analytic properties of .. We show in Sect. 4.5 how . can be analytically continued to a domain of a Riemann surface, defined in Sect. 4.2, and we draw some consequences. This question is related to the problem of mastering the analytic co
作者: Discrete    時(shí)間: 2025-3-25 13:00
Tipps und Tricks für den Urologenth the first Painlevé equation, which will be used later on to get the truncated solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé equation and, equivalently, the canonical normal form eq
作者: 小畫像    時(shí)間: 2025-3-25 16:42

作者: Omniscient    時(shí)間: 2025-3-25 20:44
https://doi.org/10.1007/978-3-642-55794-1esurgence viewpoint. We define sectorial germs of holomorphic functions (Sect. 7.2) and we introduce the sheaf of microfunctions (Sect. 7.3). This provides an approach to the notion of singularities which is the purpose of Sect. 7.4. We define the formal Laplace transform for microfunctions and for
作者: 按時(shí)間順序    時(shí)間: 2025-3-26 00:21

作者: 毛細(xì)血管    時(shí)間: 2025-3-26 06:49

作者: incisive    時(shí)間: 2025-3-26 10:35
0075-8434 .theory of resurgence.For the first time, higher order StokeThe aim of this volume is two-fold. First, to show howthe resurgent methods introduced in volume 1 can be applied efficiently in anon-linear setting; to this end further properties of the resurgence theorymust be developed. Second, to analy
作者: 圓柱    時(shí)間: 2025-3-26 15:23

作者: Spartan    時(shí)間: 2025-3-26 20:13

作者: 報(bào)復(fù)    時(shí)間: 2025-3-27 00:53

作者: 過濾    時(shí)間: 2025-3-27 01:12
,Truncated Solutions For The First Painlevé Equation,inor of the formal series solution we started with (Sect. 6.1). We then make a focus on the transseries solution and we show their Borel-Laplace summability (Sect. 6.2). This provides the truncated solutions by Borel-Laplace summation (Sect. 6.4).
作者: sorbitol    時(shí)間: 2025-3-27 08:55

作者: 委派    時(shí)間: 2025-3-27 10:33
https://doi.org/10.1007/978-3-642-55794-1ntinuations of convolution products and, as a byproduct, of getting qualitative estimates on any compact set. This is what we will partly do in Sect. 4.3 and Sect. 4.4, using only elementary geometrical arguments. We end with some supplements in Sect. 4.6.
作者: CLASH    時(shí)間: 2025-3-27 14:14

作者: 率直    時(shí)間: 2025-3-27 21:22

作者: 不妥協(xié)    時(shí)間: 2025-3-28 01:43
,Tritruncated Solutions For The First Painlevé Equation,he “‘main asymptotic existence theorem”. We then study the Borel-Laplace summability property of the formal solution by various methods (Sect. 3.3). One deduces the existence of the tritruncated solutions for the first Painlevé equation, by Borel-Laplace summation (Sect. 3.4).
作者: 徹底檢查    時(shí)間: 2025-3-28 03:33

作者: 地牢    時(shí)間: 2025-3-28 06:24

作者: 鐵砧    時(shí)間: 2025-3-28 14:06

作者: critique    時(shí)間: 2025-3-28 15:04

作者: 好開玩笑    時(shí)間: 2025-3-28 21:59

作者: 確保    時(shí)間: 2025-3-29 02:19

作者: 哀求    時(shí)間: 2025-3-29 06:59
Wesentliche Elemente des Dramas,age, was ein Drama überhaupt ist oder, wie Goethes Wilhelm Meister sie stellt, ?was zum Wesen des Schauspieles geh?rt und was nur zuf?llig dran ist? (Theatralische Sendung II 2; nach Grimm, Dramentheorien I, S. 180), allzu theoretisch oder gar überflüssig erscheinen. Andererseits bewegt sich jede An




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
大余县| 抚宁县| 长汀县| 河池市| 美姑县| 嘉鱼县| 巴林右旗| 长宁县| 西乌珠穆沁旗| 大埔区| 桑日县| 扶余县| 建始县| 剑河县| 马鞍山市| 丰台区| 鱼台县| 奎屯市| 淮阳县| 合阳县| 如皋市| 北海市| 榆林市| 延边| 金阳县| 大渡口区| 天祝| 图片| 阿合奇县| 东光县| 建瓯市| 五莲县| 南宫市| 天津市| 临西县| 弥渡县| 民乐县| 涞水县| 孝义市| 明星| 宜良县|