標(biāo)題: Titlebook: Diophantine Approximation; Wolfgang M. Schmidt Book 1980 Springer-Verlag Berlin Heidelberg 1980 Diophantine approximation.Diophantische Ap [打印本頁(yè)] 作者: Callow 時(shí)間: 2025-3-21 16:58
書(shū)目名稱Diophantine Approximation影響因子(影響力)
作者: Dysplasia 時(shí)間: 2025-3-22 00:12 作者: Agility 時(shí)間: 2025-3-22 04:24 作者: Congruous 時(shí)間: 2025-3-22 08:10 作者: 苦惱 時(shí)間: 2025-3-22 12:35 作者: Host142 時(shí)間: 2025-3-22 15:37
Integer Points in Parallelepipeds,me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)作者: Host142 時(shí)間: 2025-3-22 20:36 作者: Junction 時(shí)間: 2025-3-22 21:43
Suminori Tokunaga,Mitsuru Okiyama...,...,... n . Q > 1 .. . q,p.,...,P..作者: monogamy 時(shí)間: 2025-3-23 05:13
Peter Nijkamp,Piet Rietveld,Laura Spierdijk . 1A (Liouville (1844)). . . . d. . c(.) > 0 . . . . . ..作者: 得體 時(shí)間: 2025-3-23 09:29 作者: oracle 時(shí)間: 2025-3-23 10:13
Approximation to Irrational Numbers by Rationals,Given a real number ., let [.], the . of ., denote the greatest integer ≤ ., and let {.} = . ? [.]. Then {.} is the . of ., and satisfies 0 ≤ {.} < 1. Also, let ‖.‖ denote the distance from . to the nearest integer. Then always 0 ≤ ‖.‖ ≤ 1/2.作者: 前奏曲 時(shí)間: 2025-3-23 15:17
Simultaneous Approximation,...,...,... n . Q > 1 .. . q,p.,...,P..作者: hyperuricemia 時(shí)間: 2025-3-23 20:50
,Roth’s Theorem, . 1A (Liouville (1844)). . . . d. . c(.) > 0 . . . . . ..作者: 側(cè)面左右 時(shí)間: 2025-3-23 23:10
Approximation By Algebraic Numbers,In the first chapters we studied approximation to real numbers by rationals. We now take up approximation to real numbers . algebraic numbers. This is quite different from the questions e.g. considered in Chapter V on approximation . algebraic numbers by rationals.作者: Wallow 時(shí)間: 2025-3-24 03:44 作者: BRUNT 時(shí)間: 2025-3-24 06:30
https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ? B. of length ?(W.) = α?(B.). Then Black picks a compact interval B. ? W. of length ?(B.) = β?(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.作者: 正面 時(shí)間: 2025-3-24 12:44
https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)作者: 同音 時(shí)間: 2025-3-24 18:40
Complex Landscapes of Spatial Interactionmber field generated by ..,...,.. and let 1,..,...,..,...,.. be a basis of this field. We saw in Theorem 4A of Chapter II that ..,...,.. are badly approximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,..作者: 抱負(fù) 時(shí)間: 2025-3-24 20:36 作者: panorama 時(shí)間: 2025-3-25 03:07
https://doi.org/10.1007/978-3-540-38645-2Diophantine approximation; Diophantische Approximation; Factor; Microsoft Access; Volume; algebra; approxi作者: CROAK 時(shí)間: 2025-3-25 05:08
978-3-540-09762-4Springer-Verlag Berlin Heidelberg 1980作者: Type-1-Diabetes 時(shí)間: 2025-3-25 11:33 作者: 胎兒 時(shí)間: 2025-3-25 12:18
0075-8434 Overview: 978-3-540-09762-4978-3-540-38645-2Series ISSN 0075-8434 Series E-ISSN 1617-9692 作者: TIGER 時(shí)間: 2025-3-25 17:38
https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ? B. of length ?(W.) = α?(B.). Then Black picks a compact interval B. ? W. of length ?(B.) = β?(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.作者: NAIVE 時(shí)間: 2025-3-25 21:31
https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)作者: 忙碌 時(shí)間: 2025-3-26 03:15
Simultaneous Approximation to Algebraic Numbers,roximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,... ?, . d. ... q.,...,q., p . q = max(|q.|,..., |q.|) > 0.作者: 鴿子 時(shí)間: 2025-3-26 06:06
Norm Form Equations,n element . of K under ?. by ?.. We will always tacitly assume that ?., is the identity map, so that .. = ., and we shall say that .. = ., ..,..... are the conjugates of .. In this notation ?(.) = ........ Given a linear form . with coefficients in K we write 作者: 密碼 時(shí)間: 2025-3-26 10:34 作者: 繁榮地區(qū) 時(shí)間: 2025-3-26 15:34
Complex Landscapes of Spatial Interactionn element . of K under ?. by ?.. We will always tacitly assume that ?., is the identity map, so that .. = ., and we shall say that .. = ., ..,..... are the conjugates of .. In this notation ?(.) = ........ Given a linear form . with coefficients in K we write 作者: 翅膀拍動(dòng) 時(shí)間: 2025-3-26 20:22
7樓作者: ORE 時(shí)間: 2025-3-27 01:00
8樓作者: 職業(yè) 時(shí)間: 2025-3-27 01:13
8樓作者: Antioxidant 時(shí)間: 2025-3-27 05:51
8樓作者: 星球的光亮度 時(shí)間: 2025-3-27 12:58
8樓作者: 暫時(shí)過(guò)來(lái) 時(shí)間: 2025-3-27 14:27
9樓作者: BILL 時(shí)間: 2025-3-27 18:57
9樓作者: intertwine 時(shí)間: 2025-3-27 22:25
9樓作者: receptors 時(shí)間: 2025-3-28 02:28
9樓作者: AMOR 時(shí)間: 2025-3-28 08:18
10樓作者: Insubordinate 時(shí)間: 2025-3-28 11:31
10樓作者: Credence 時(shí)間: 2025-3-28 15:53
10樓作者: colloquial 時(shí)間: 2025-3-28 19:51
10樓