派博傳思國(guó)際中心

標(biāo)題: Titlebook: Diophantine Approximation; Wolfgang M. Schmidt Book 1980 Springer-Verlag Berlin Heidelberg 1980 Diophantine approximation.Diophantische Ap [打印本頁(yè)]

作者: Callow    時(shí)間: 2025-3-21 16:58
書(shū)目名稱Diophantine Approximation影響因子(影響力)




書(shū)目名稱Diophantine Approximation影響因子(影響力)學(xué)科排名




書(shū)目名稱Diophantine Approximation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Diophantine Approximation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Diophantine Approximation被引頻次




書(shū)目名稱Diophantine Approximation被引頻次學(xué)科排名




書(shū)目名稱Diophantine Approximation年度引用




書(shū)目名稱Diophantine Approximation年度引用學(xué)科排名




書(shū)目名稱Diophantine Approximation讀者反饋




書(shū)目名稱Diophantine Approximation讀者反饋學(xué)科排名





作者: Dysplasia    時(shí)間: 2025-3-22 00:12

作者: Agility    時(shí)間: 2025-3-22 04:24

作者: Congruous    時(shí)間: 2025-3-22 08:10

作者: 苦惱    時(shí)間: 2025-3-22 12:35

作者: Host142    時(shí)間: 2025-3-22 15:37
Integer Points in Parallelepipeds,me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)
作者: Host142    時(shí)間: 2025-3-22 20:36

作者: Junction    時(shí)間: 2025-3-22 21:43
Suminori Tokunaga,Mitsuru Okiyama...,...,... n . Q > 1 .. . q,p.,...,P..
作者: monogamy    時(shí)間: 2025-3-23 05:13
Peter Nijkamp,Piet Rietveld,Laura Spierdijk . 1A (Liouville (1844)). . . . d. . c(.) > 0 . . . . . ..
作者: 得體    時(shí)間: 2025-3-23 09:29

作者: oracle    時(shí)間: 2025-3-23 10:13
Approximation to Irrational Numbers by Rationals,Given a real number ., let [.], the . of ., denote the greatest integer ≤ ., and let {.} = . ? [.]. Then {.} is the . of ., and satisfies 0 ≤ {.} < 1. Also, let ‖.‖ denote the distance from . to the nearest integer. Then always 0 ≤ ‖.‖ ≤ 1/2.
作者: 前奏曲    時(shí)間: 2025-3-23 15:17
Simultaneous Approximation,...,...,... n . Q > 1 .. . q,p.,...,P..
作者: hyperuricemia    時(shí)間: 2025-3-23 20:50
,Roth’s Theorem, . 1A (Liouville (1844)). . . . d. . c(.) > 0 . . . . . ..
作者: 側(cè)面左右    時(shí)間: 2025-3-23 23:10
Approximation By Algebraic Numbers,In the first chapters we studied approximation to real numbers by rationals. We now take up approximation to real numbers . algebraic numbers. This is quite different from the questions e.g. considered in Chapter V on approximation . algebraic numbers by rationals.
作者: Wallow    時(shí)間: 2025-3-24 03:44

作者: BRUNT    時(shí)間: 2025-3-24 06:30
https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ? B. of length ?(W.) = α?(B.). Then Black picks a compact interval B. ? W. of length ?(B.) = β?(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.
作者: 正面    時(shí)間: 2025-3-24 12:44
https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)
作者: 同音    時(shí)間: 2025-3-24 18:40
Complex Landscapes of Spatial Interactionmber field generated by ..,...,.. and let 1,..,...,..,...,.. be a basis of this field. We saw in Theorem 4A of Chapter II that ..,...,.. are badly approximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,..
作者: 抱負(fù)    時(shí)間: 2025-3-24 20:36

作者: panorama    時(shí)間: 2025-3-25 03:07
https://doi.org/10.1007/978-3-540-38645-2Diophantine approximation; Diophantische Approximation; Factor; Microsoft Access; Volume; algebra; approxi
作者: CROAK    時(shí)間: 2025-3-25 05:08
978-3-540-09762-4Springer-Verlag Berlin Heidelberg 1980
作者: Type-1-Diabetes    時(shí)間: 2025-3-25 11:33

作者: 胎兒    時(shí)間: 2025-3-25 12:18
0075-8434 Overview: 978-3-540-09762-4978-3-540-38645-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: TIGER    時(shí)間: 2025-3-25 17:38
https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ? B. of length ?(W.) = α?(B.). Then Black picks a compact interval B. ? W. of length ?(B.) = β?(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.
作者: NAIVE    時(shí)間: 2025-3-25 21:31
https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)
作者: 忙碌    時(shí)間: 2025-3-26 03:15
Simultaneous Approximation to Algebraic Numbers,roximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,... ?, . d. ... q.,...,q., p . q = max(|q.|,..., |q.|) > 0.
作者: 鴿子    時(shí)間: 2025-3-26 06:06
Norm Form Equations,n element . of K under ?. by ?.. We will always tacitly assume that ?., is the identity map, so that .. = ., and we shall say that .. = ., ..,..... are the conjugates of .. In this notation ?(.) = ........ Given a linear form . with coefficients in K we write
作者: 密碼    時(shí)間: 2025-3-26 10:34

作者: 繁榮地區(qū)    時(shí)間: 2025-3-26 15:34
Complex Landscapes of Spatial Interactionn element . of K under ?. by ?.. We will always tacitly assume that ?., is the identity map, so that .. = ., and we shall say that .. = ., ..,..... are the conjugates of .. In this notation ?(.) = ........ Given a linear form . with coefficients in K we write
作者: 翅膀拍動(dòng)    時(shí)間: 2025-3-26 20:22
7樓
作者: ORE    時(shí)間: 2025-3-27 01:00
8樓
作者: 職業(yè)    時(shí)間: 2025-3-27 01:13
8樓
作者: Antioxidant    時(shí)間: 2025-3-27 05:51
8樓
作者: 星球的光亮度    時(shí)間: 2025-3-27 12:58
8樓
作者: 暫時(shí)過(guò)來(lái)    時(shí)間: 2025-3-27 14:27
9樓
作者: BILL    時(shí)間: 2025-3-27 18:57
9樓
作者: intertwine    時(shí)間: 2025-3-27 22:25
9樓
作者: receptors    時(shí)間: 2025-3-28 02:28
9樓
作者: AMOR    時(shí)間: 2025-3-28 08:18
10樓
作者: Insubordinate    時(shí)間: 2025-3-28 11:31
10樓
作者: Credence    時(shí)間: 2025-3-28 15:53
10樓
作者: colloquial    時(shí)間: 2025-3-28 19:51
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
凤台县| 澎湖县| 阿拉尔市| 福贡县| 龙游县| 汝南县| 岐山县| 加查县| 来宾市| 铜陵市| 略阳县| 宜州市| 喀什市| 新泰市| 手机| 深水埗区| 两当县| 电白县| 丰镇市| 祥云县| 安图县| 安西县| 博客| 怀集县| 准格尔旗| 富民县| 鄂托克前旗| 土默特右旗| 镇安县| 萝北县| 张家界市| 兴文县| 屏边| 娱乐| 天津市| 思南县| 玛曲县| 谢通门县| 广昌县| 石渠县| 阿克陶县|