派博傳思國際中心

標(biāo)題: Titlebook: Data Science Solutions on Azure; Tools and Techniques Julian Soh,Priyanshi Singh Book 20201st edition Julian Soh and Priyanshi Singh 2020 A [打印本頁]

作者: 郊區(qū)    時間: 2025-3-21 16:54
書目名稱Data Science Solutions on Azure影響因子(影響力)




書目名稱Data Science Solutions on Azure影響因子(影響力)學(xué)科排名




書目名稱Data Science Solutions on Azure網(wǎng)絡(luò)公開度




書目名稱Data Science Solutions on Azure網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science Solutions on Azure被引頻次




書目名稱Data Science Solutions on Azure被引頻次學(xué)科排名




書目名稱Data Science Solutions on Azure年度引用




書目名稱Data Science Solutions on Azure年度引用學(xué)科排名




書目名稱Data Science Solutions on Azure讀者反饋




書目名稱Data Science Solutions on Azure讀者反饋學(xué)科排名





作者: sperse    時間: 2025-3-21 20:26
Government Regulation of Transfer PricingThe exponential pace of innovation in artificial intelligence in recent years can be attributed to advancements in machine learning. In turn, the advancements in machine learning are based on two core developments?– availability of data and ubiquitous access to unparalleled compute capabilities.
作者: 激怒某人    時間: 2025-3-22 00:47
https://doi.org/10.1007/978-3-030-58823-6In Chapter ., we explored the concepts of Spark and Azure Databricks’ implementation of the platform. In this chapter, we will be doing a hands-on exploration of these concepts in Azure Databricks.
作者: 女歌星    時間: 2025-3-22 08:31

作者: Expertise    時間: 2025-3-22 10:12

作者: adhesive    時間: 2025-3-22 14:31
Hands-on with Azure Databricks,In Chapter ., we explored the concepts of Spark and Azure Databricks’ implementation of the platform. In this chapter, we will be doing a hands-on exploration of these concepts in Azure Databricks.
作者: adhesive    時間: 2025-3-22 20:28
Data Science in the Modern Enterprise,t innovation, such as machine learning (ML), artificial intelligence (AI), and Internet of Things (IoT). This is not an inaccurate representation since data science is after all the foundation for ML, AI, and IoT.
作者: 抱狗不敢前    時間: 2025-3-23 00:30
Data Preparation and Data Engineering Basics,he process, which, if not done correctly, would yield inaccurate results and may lead to negative consequences. That is why so much time is being spent on data preparation. If we want to make the data science process more efficient, shaving off the amount of time spent on data preparation is one area for us to look at.
作者: Ceremony    時間: 2025-3-23 04:55
Clinical Diagnosis: “Simple” Patientst innovation, such as machine learning (ML), artificial intelligence (AI), and Internet of Things (IoT). This is not an inaccurate representation since data science is after all the foundation for ML, AI, and IoT.
作者: Watemelon    時間: 2025-3-23 08:14

作者: glans-penis    時間: 2025-3-23 10:46
https://doi.org/10.1007/978-1-4842-6405-8Azure; Data Scientist; DevOps; Azure Databricks; data abstraction; Big data analytics
作者: 后退    時間: 2025-3-23 15:33
978-1-4842-6404-1Julian Soh and Priyanshi Singh 2020
作者: 機構(gòu)    時間: 2025-3-23 20:58
Clinical Diagnosis: “Simple” Patientst innovation, such as machine learning (ML), artificial intelligence (AI), and Internet of Things (IoT). This is not an inaccurate representation since data science is after all the foundation for ML, AI, and IoT.
作者: crockery    時間: 2025-3-24 01:07

作者: adj憂郁的    時間: 2025-3-24 04:54

作者: 從屬    時間: 2025-3-24 09:42

作者: Mutter    時間: 2025-3-24 11:02
https://doi.org/10.1007/978-3-030-44703-8livery and quality of model development through monitoring, validation, and governance of machine learning models. This is equivalent to how DevOps helps software engineers develop, test, and deploy software quicker and with fewer defects. MLOps supports the data science life cycle just as DevOps su
作者: 人造    時間: 2025-3-24 18:48

作者: CLAY    時間: 2025-3-24 21:07

作者: painkillers    時間: 2025-3-25 02:32
Statistical Techniques and Concepts in Data Science,e been brought together to solve a business problem, optimize a process, or create predictive models based on data-driven techniques. It is thus imperative that all members of the team have some idea of the statistical techniques and concepts used in data science.
作者: 減去    時間: 2025-3-25 06:46
Book 20201st editiony, and help drive the transformation of organizations into a knowledge and data-driven entity.?It?provides an end-to-end understanding of data science life cycle and the techniques to efficiently productionize workloads.?.The book starts with an introduction to data science and discusses the statist
作者: Archipelago    時間: 2025-3-25 11:33
Hands-on with Azure Machine Learning,ython SDK, R SDK, and low-code or zero-code Azure ML designer approaches to develop, train, and deploy ML models; we will use Python SDK for our hands-on labs in this chapter. For the purposes of hands-on lab in this chapter, we will assume users are familiar with Python and getting started with implementing data science solutions on cloud.
作者: Amylase    時間: 2025-3-25 12:22

作者: 大量    時間: 2025-3-25 17:43
Parallel Processes in Oculomotor Controle been brought together to solve a business problem, optimize a process, or create predictive models based on data-driven techniques. It is thus imperative that all members of the team have some idea of the statistical techniques and concepts used in data science.
作者: 招人嫉妒    時間: 2025-3-25 23:29
operation discussedUnderstand and learn?the skills needed to use modern tools in Microsoft Azure. This book discusses how to practically apply these tools in the industry, and help drive the transformation of organizations into a knowledge and data-driven entity.?It?provides an end-to-end understan
作者: 種植,培養(yǎng)    時間: 2025-3-26 01:19

作者: Osmosis    時間: 2025-3-26 04:46

作者: 出生    時間: 2025-3-26 11:09

作者: 嗎啡    時間: 2025-3-26 15:02
Statistical Techniques and Concepts in Data Science,e of the math used in statistical techniques. The “data scientist” today may be a transitioning database professionals, data/Big Data engineers, software engineer, IT auditor, fraud investigator, or even a business analyst. Often, a project team would be comprised of all these professionals that hav
作者: 壯麗的去    時間: 2025-3-26 19:48

作者: 祝賀    時間: 2025-3-27 00:49

作者: 食物    時間: 2025-3-27 05:09
Machine Learning Operations,livery and quality of model development through monitoring, validation, and governance of machine learning models. This is equivalent to how DevOps helps software engineers develop, test, and deploy software quicker and with fewer defects. MLOps supports the data science life cycle just as DevOps su
作者: incarcerate    時間: 2025-3-27 08:23
ing real life scenarios and how-to-build solutions in a single comprehensive cloud ecosystem.?.What You‘ll Learn.Understand big data analytics with Spark in Azure Databri978-1-4842-6404-1978-1-4842-6405-8
作者: 粉筆    時間: 2025-3-27 12:15

作者: watertight,    時間: 2025-3-27 15:05

作者: 2否定    時間: 2025-3-27 20:15

作者: 不溶解    時間: 2025-3-27 22:03

作者: Ovulation    時間: 2025-3-28 05:18

作者: extemporaneous    時間: 2025-3-28 10:18

作者: manifestation    時間: 2025-3-28 10:41
Parametric AR(p)-ARCH(q) Models,eters by the ordinary least squares (OLS) method and adopt the two-step estimation for the ARCH part, in which the parameters of the ARCH part are estimated based on the residuals of the AR part. In the first section we sketch the estimation theory for the parametric AR (.)-ARCH (.) model with the O
作者: 微不足道    時間: 2025-3-28 16:15

作者: 群島    時間: 2025-3-28 19:52





歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
郯城县| 宁阳县| 淮北市| 弋阳县| 三明市| 南阳市| 壤塘县| 毕节市| 濮阳市| 依安县| 左云县| 丰镇市| 新沂市| 黄山市| 周口市| 临漳县| 兴仁县| 信阳市| 晋城| 蕉岭县| 玉环县| 遂川县| 彭水| 汶上县| 平邑县| 潼南县| 咸阳市| 遂昌县| 石河子市| 筠连县| 辽源市| 岗巴县| 高雄市| 广宗县| 和平区| 乌鲁木齐市| 大理市| 泰来县| 大安市| 枞阳县| 兰考县|