派博傳思國際中心

標題: Titlebook: Conjugate Gradient Algorithms in Nonconvex Optimization; Rados?aw Pytlak Book 2009 Springer-Verlag Berlin Heidelberg 2009 Algebra.Bound Co [打印本頁]

作者: interminable    時間: 2025-3-21 18:27
書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization影響因子(影響力)




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization影響因子(影響力)學科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization網(wǎng)絡(luò)公開度




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization網(wǎng)絡(luò)公開度學科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization被引頻次




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization被引頻次學科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization年度引用




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization年度引用學科排名




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization讀者反饋




書目名稱Conjugate Gradient Algorithms in Nonconvex Optimization讀者反饋學科排名





作者: 努力趕上    時間: 2025-3-21 23:39
1571-568X mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. .978-3-642-09925-0978-3-540-85634-4Series ISSN 1571-568X
作者: 吸引人的花招    時間: 2025-3-22 02:17

作者: 狂怒    時間: 2025-3-22 08:08
Phase Domains and Phase Solitons,iable problems were proposed. These propositions relied on the simplicity of their counterparts for quadratic problems. As we have shown in the previous chapter a conjugate gradient algorithm is an iterative process which requires at each iteration the current gradient and the previous direction. Th
作者: NOMAD    時間: 2025-3-22 09:48

作者: liaison    時間: 2025-3-22 14:03
Subcritical Solitons I: Saturable Absorber, preconditioned conjugate gradient algorithms by others. The purpose of scaling in methods applied to quadratics is to transform eigenvalues of the Hessian matrix. Theorem 1.11 suggests that if eigenvalues are clustered then a conjugate gradient algorithm minimizes the quadratic in the number of ite
作者: liaison    時間: 2025-3-22 19:37
Todd Shelly,Nancy Epsky,Roger Vargason. The idea behind preconditioned conjugate gradient algorithm is to transform the decision vector by linear transformation . such that after the transformation the nonlinear problem is . to solve — eigenvalues of Hessian matrices of the objective function of the new optimization problem are more c
作者: SPASM    時間: 2025-3-22 23:59
https://doi.org/10.1007/978-3-540-36308-8duals which uses the projection operator to cope with box constraints is competitive to the benchmark code L-BFGS-B in terms of CPU time (cf. Figs. 10.1, 10.2, 10.4, 10.6). For larger problems it is almost as efficient as L-BFGS-B program also in terms of the number of function evaluations (cf. Fig.
作者: Increment    時間: 2025-3-23 04:19

作者: 講個故事逗他    時間: 2025-3-23 05:41
Fundamental tests with trapped antiprotons,The method of shortest residuals is briefly discussed in Chap. 1. We show there that the method differs from a standard conjugate gradient algorithm only by scaling factors applied to conjugate directions. This is true when problems with quadratics are considered. However, these methods are quite different if applied to nonconvex functions.
作者: 想象    時間: 2025-3-23 13:40
https://doi.org/10.1007/978-3-540-77817-2In this chapter we consider algorithms for the unconstrained minimization problem: ..
作者: 施加    時間: 2025-3-23 17:39

作者: Munificent    時間: 2025-3-23 18:21
Trauma - An Engineering AnalysisIn the chapter we consider the problem . subject to the simple bounds ., where we assume that ., . are fixed vectors and the inequalities are taken componentwise. It is the special case of the problem considered in the previous chapter if we notice that the set . is a polyhedron.
作者: persistence    時間: 2025-3-24 00:29

作者: Madrigal    時間: 2025-3-24 04:47
Limited Memory Quasi-Newton Algorithms,The memoryless quasi-Newton method stops short in creating an efficient compromise between a robust conjugate gradient algorithm and more efficient quasi-Newton method which uses limited storage.
作者: 寬度    時間: 2025-3-24 09:02

作者: Conducive    時間: 2025-3-24 14:22
The Method of Shortest Residuals for Differentiable Problems,In this chapter we consider algorithms for the unconstrained minimization problem: ..
作者: 健談的人    時間: 2025-3-24 15:24
Optimization on a Polyhedron,In the chapter our interest focuses on algorithms for problems with constraints. We consider the problem . where .. The set Ω is convex and is called the . [187].
作者: 卵石    時間: 2025-3-24 20:00

作者: 中子    時間: 2025-3-25 01:29

作者: Capture    時間: 2025-3-25 04:41

作者: FATAL    時間: 2025-3-25 10:23

作者: Addictive    時間: 2025-3-25 14:52

作者: pus840    時間: 2025-3-25 17:50
978-3-642-09925-0Springer-Verlag Berlin Heidelberg 2009
作者: 摻和    時間: 2025-3-25 23:29

作者: Increment    時間: 2025-3-26 03:52

作者: lipoatrophy    時間: 2025-3-26 07:31
Conjugate Direction Methods for Quadratic Problems,tion. Consider the problem of finding . ∈ . satisfying ., where . ∈ ., . ∈ . and . is symmetric positive definite. The solution to this problem is also a solution of the optimization problem (.): .. Consider the point x? such that .. We can show that (1.2) are the necessary optimality conditions for problem (1.1).
作者: agenda    時間: 2025-3-26 10:43
Conjugate Gradient Methods for Nonconvex Problems,us chapter a conjugate gradient algorithm is an iterative process which requires at each iteration the current gradient and the previous direction. The simple scheme for calculating the current direction was easy to extend to a nonquadratic problem ..
作者: 真實的你    時間: 2025-3-26 14:58

作者: nonplus    時間: 2025-3-26 19:28
https://doi.org/10.1007/3-540-36416-1inear Hestenes-Stiefel algorithm provided that the directional minimization is exact. Having that in mind and the fact that Hager and Zhang do not stipulate condition (2.68) in Theorem 2.14 their main convergence result is remarkable.
作者: 否決    時間: 2025-3-26 22:45
Subcritical Solitons I: Saturable Absorber,rations comparable to the number of clusters. Preconditioning in the quadratic case significantly improves the efficiency of a conjugate gradient algorithm. In fact it transforms a conjugate gradient algorithm to a viable optimization technique widely used in several numerical algebra problems especially when problem’s dimension is large.
作者: 搖曳的微光    時間: 2025-3-27 04:58

作者: gerontocracy    時間: 2025-3-27 06:01
Memoryless Quasi-Newton Methods,inear Hestenes-Stiefel algorithm provided that the directional minimization is exact. Having that in mind and the fact that Hager and Zhang do not stipulate condition (2.68) in Theorem 2.14 their main convergence result is remarkable.
作者: 頭腦冷靜    時間: 2025-3-27 10:15

作者: 外來    時間: 2025-3-27 16:23

作者: anus928    時間: 2025-3-27 21:10
Book 2009ugate gradient algorithm perspective. ..Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradient algorithms. ..The special attention is
作者: 吞下    時間: 2025-3-28 01:12
Book 2009ience. It can be used by researches in optimization, graduate students in operations research, engineering, mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. .
作者: Rebate    時間: 2025-3-28 05:37
1571-568X timization techniques are shown from a conjugate gradient algorithm perspective. ..Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradi
作者: Forage飼料    時間: 2025-3-28 07:26
Phase Domains and Phase Solitons,us chapter a conjugate gradient algorithm is an iterative process which requires at each iteration the current gradient and the previous direction. The simple scheme for calculating the current direction was easy to extend to a nonquadratic problem ..
作者: 努力趕上    時間: 2025-3-28 14:30
Todd Shelly,Nancy Epsky,Roger Vargasnsformation the nonlinear problem is . to solve — eigenvalues of Hessian matrices of the objective function of the new optimization problem are more clustered (see Chap. 1 for the discussion of how eigenvalues clustering influences the behavior of conjugate gradient algorithms).
作者: 感情    時間: 2025-3-28 18:16

作者: Addictive    時間: 2025-3-28 20:02

作者: 貨物    時間: 2025-3-28 23:19

作者: LAVA    時間: 2025-3-29 04:30
Preconditioned Conjugate Gradient Algorithms, preconditioned conjugate gradient algorithms by others. The purpose of scaling in methods applied to quadratics is to transform eigenvalues of the Hessian matrix. Theorem 1.11 suggests that if eigenvalues are clustered then a conjugate gradient algorithm minimizes the quadratic in the number of ite
作者: 花爭吵    時間: 2025-3-29 09:52

作者: Carbon-Monoxide    時間: 2025-3-29 12:07

作者: 間諜活動    時間: 2025-3-29 16:01

作者: INERT    時間: 2025-3-29 22:46

作者: APNEA    時間: 2025-3-30 03:23





歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
理塘县| 沙坪坝区| 新龙县| 渭南市| 麻栗坡县| 香河县| 克山县| 平安县| 永登县| 仙桃市| 修文县| 太原市| 寿宁县| 余干县| 临沧市| 康保县| 枣庄市| 鲁甸县| 寿阳县| 金坛市| 神池县| 时尚| 上栗县| 陆河县| 阿合奇县| 新沂市| 江都市| 沂源县| 婺源县| 铜陵市| 周宁县| 湖口县| 文安县| 黔东| 叶城县| 天镇县| 股票| 永和县| 锡林郭勒盟| 孝感市| 白玉县|