派博傳思國際中心

標題: Titlebook: Computational Probability; Algorithms and Appli John H. Drew,Diane L. Evans,Lawrence M. Leemis Book 20081st edition Springer-Verlag US 2008 [打印本頁]

作者: Reagan    時間: 2025-3-21 18:41
書目名稱Computational Probability影響因子(影響力)




書目名稱Computational Probability影響因子(影響力)學(xué)科排名




書目名稱Computational Probability網(wǎng)絡(luò)公開度




書目名稱Computational Probability網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Probability被引頻次




書目名稱Computational Probability被引頻次學(xué)科排名




書目名稱Computational Probability年度引用




書目名稱Computational Probability年度引用學(xué)科排名




書目名稱Computational Probability讀者反饋




書目名稱Computational Probability讀者反饋學(xué)科排名





作者: 面包屑    時間: 2025-3-21 23:24
Data Structures and Simple Algorithmsause they are defined with a somewhat simpler data structure than that for discrete random variables. The development described here gives a probabilist the ability to automate the instantiation and processing of continuous random variables—key elements of computational probability.
作者: 是貪求    時間: 2025-3-22 04:27

作者: 代理人    時間: 2025-3-22 06:42

作者: conference    時間: 2025-3-22 10:27
Stochastic Simulationtational probability in input modeling. Section 10.3 contains a development of an algorithm to find the distribution of the Kolmogorov—Smirnov goodness of-fit test statistic in the all-parameters-known case.
作者: integral    時間: 2025-3-22 15:05
https://doi.org/10.1007/978-0-387-74676-0APPL; Maple; Random variable; Simulation; Survival analysis; Transformation; algorithm; algorithms; calculus
作者: integral    時間: 2025-3-22 20:26
Springer-Verlag US 2008
作者: 生銹    時間: 2025-3-22 22:40
https://doi.org/10.1007/978-3-8349-3948-7This chapter presents an algorithm for computing the PDF of the sum of two independent discrete random variables, along with an implementation of the algorithm in APPL. Some examples illustrate the utility of this algorithm.
作者: 吝嗇性    時間: 2025-3-23 04:01
Zusammenfassende Diskussion und Ausblick,This chapter presents an algorithm for computing the PDF of order statistics drawn from discrete parent populations, along with an implementation of the algorithm in APPL. Several examples illustrate the utility of this algorithm.
作者: 主講人    時間: 2025-3-23 06:44
https://doi.org/10.1007/978-3-322-82151-5The remaining chapters contain dozens of computational probability applications using APPL. The applications range in complexity from brief examples to results and algorithms requiring long derivations. This chapter surveys some applications in reliability and the closely-related field of survival analysis.
作者: Bernstein-test    時間: 2025-3-23 13:14
Sums of Independent Random VariablesThis chapter presents an algorithm for computing the PDF of the sum of two independent discrete random variables, along with an implementation of the algorithm in APPL. Some examples illustrate the utility of this algorithm.
作者: Urgency    時間: 2025-3-23 14:16

作者: farewell    時間: 2025-3-23 20:26

作者: TEM    時間: 2025-3-23 23:46

作者: 使乳化    時間: 2025-3-24 03:40
Dheeraj Kumar,Ravi Kant Singh,Apurba Layekessions, plotting, and programming, just to name a few of the basics. APPL is, simply, a set of supplementary Maple commands and procedures that augments the existing computer algebra system. In effect, APPL takes the capabilities of Maple and turns it into a computer algebra system for computationa
作者: Vulvodynia    時間: 2025-3-24 07:29
Dheeraj Kumar,Ravi Kant Singh,Apurba Layekause they are defined with a somewhat simpler data structure than that for discrete random variables. The development described here gives a probabilist the ability to automate the instantiation and processing of continuous random variables—key elements of computational probability.
作者: Yourself    時間: 2025-3-24 10:45

作者: 名義上    時間: 2025-3-24 18:00

作者: 投票    時間: 2025-3-24 22:07
https://doi.org/10.1007/978-3-8349-3948-7discrete random variables. The first section will show that the nature of the support of discrete random variables makes the data structures required much more complicated than for continuous random variables.
作者: 提名    時間: 2025-3-25 02:26

作者: 瘙癢    時間: 2025-3-25 04:15
Roles of the SCM Steering Departmention of the longest path of a series—parallel stochastic activity network with continuous activity durations. Section 11.2 concerns the use of APPL in determining whether a continuous random variable obeys Benford’s law. Finally, Section 11.3 contains miscellaneous computational probability applicati
作者: DIKE    時間: 2025-3-25 10:18
Computational Probability978-0-387-74676-0Series ISSN 0884-8289 Series E-ISSN 2214-7934
作者: happiness    時間: 2025-3-25 12:18
Dheeraj Kumar,Ravi Kant Singh,Apurba Layekause they are defined with a somewhat simpler data structure than that for discrete random variables. The development described here gives a probabilist the ability to automate the instantiation and processing of continuous random variables—key elements of computational probability.
作者: 我說不重要    時間: 2025-3-25 17:09

作者: Infinitesimal    時間: 2025-3-25 22:06
https://doi.org/10.1007/978-3-8349-3948-7discrete random variables. The first section will show that the nature of the support of discrete random variables makes the data structures required much more complicated than for continuous random variables.
作者: IST    時間: 2025-3-26 00:57
Overcoming Performance Trade-Offstational probability in input modeling. Section 10.3 contains a development of an algorithm to find the distribution of the Kolmogorov—Smirnov goodness of-fit test statistic in the all-parameters-known case.
作者: 慢跑鞋    時間: 2025-3-26 08:09
John H. Drew,Diane L. Evans,Lawrence M. LeemisThis is an expository monograph with a downloadable modeling language, APPL, that will be used across the Applied Sciences domains including OR/MS, Applied Probability, Engineering, Statistics, Econom
作者: NIP    時間: 2025-3-26 08:29

作者: gnarled    時間: 2025-3-26 12:59
Computational Probabilityt to solve by hand, but are solvable with computational probability using A Probability Programming Language (APPL). We define the field of . as the development of data structures and algorithms to automate the derivation of existing and new results in probability and statistics. Section 10.3, for e
作者: –吃    時間: 2025-3-26 19:46
Maple for APPLessions, plotting, and programming, just to name a few of the basics. APPL is, simply, a set of supplementary Maple commands and procedures that augments the existing computer algebra system. In effect, APPL takes the capabilities of Maple and turns it into a computer algebra system for computationa
作者: frenzy    時間: 2025-3-27 00:29
Data Structures and Simple Algorithmsause they are defined with a somewhat simpler data structure than that for discrete random variables. The development described here gives a probabilist the ability to automate the instantiation and processing of continuous random variables—key elements of computational probability.
作者: exhilaration    時間: 2025-3-27 03:26

作者: indoctrinate    時間: 2025-3-27 07:20
Products of Random Variablesmented in the Product procedure in APPL. The algorithm behind the Transform procedure from the previous chapter differs fundamentally from the algorithm behind the Product procedure in that the former concerns the transformation of just . random variable and the latter concerns the product of . rand
作者: 擁護    時間: 2025-3-27 09:34
Data Structures and Simple Algorithmsdiscrete random variables. The first section will show that the nature of the support of discrete random variables makes the data structures required much more complicated than for continuous random variables.
作者: 無能力之人    時間: 2025-3-27 15:53
Stochastic Simulationtational probability in input modeling. Section 10.3 contains a development of an algorithm to find the distribution of the Kolmogorov—Smirnov goodness of-fit test statistic in the all-parameters-known case.
作者: 蛙鳴聲    時間: 2025-3-27 21:40
Other Applicationsion of the longest path of a series—parallel stochastic activity network with continuous activity durations. Section 11.2 concerns the use of APPL in determining whether a continuous random variable obeys Benford’s law. Finally, Section 11.3 contains miscellaneous computational probability applicati
作者: cocoon    時間: 2025-3-27 23:20

作者: 保留    時間: 2025-3-28 05:59

作者: filicide    時間: 2025-3-28 08:15
Preeti,Supriyo Roy,Kaushik Kumarhm behind the Product procedure in that the former concerns the transformation of just . random variable and the latter concerns the product of . random variables. Some examples demonstrate the algorithm’s application.
作者: 棲息地    時間: 2025-3-28 13:37

作者: 偶像    時間: 2025-3-28 18:37
Computational Probabilityevelopment of data structures and algorithms to automate the derivation of existing and new results in probability and statistics. Section 10.3, for example, contains the derivation of the distribution of a well-known test statistic that requires 99500 carefully crafted integrations.
作者: DAMN    時間: 2025-3-28 21:07
Products of Random Variableshm behind the Product procedure in that the former concerns the transformation of just . random variable and the latter concerns the product of . random variables. Some examples demonstrate the algorithm’s application.
作者: 口音在加重    時間: 2025-3-29 00:53
Other Applicationsdetermining whether a continuous random variable obeys Benford’s law. Finally, Section 11.3 contains miscellaneous computational probability applications that are not covered elsewhere in the monograph.
作者: 大吃大喝    時間: 2025-3-29 04:06

作者: delusion    時間: 2025-3-29 07:29
Dheeraj Kumar,Ravi Kant Singh,Apurba Layekf basic numeric computation, then advance to defining variables, symbolic computations, functions, data types, solving equations, calculus and graphing. Then we will discuss the programming features of Maple that facilitate building the APPL language: loops, conditions and procedures.
作者: CHASM    時間: 2025-3-29 12:51

作者: BAIT    時間: 2025-3-29 19:29

作者: countenance    時間: 2025-3-29 21:57

作者: Pcos971    時間: 2025-3-30 03:48





歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
巴青县| 平果县| 韶山市| 清丰县| 樟树市| 巴中市| 东源县| 庆云县| 友谊县| 同心县| 福泉市| 中宁县| 商都县| 乐东| 黔江区| 灯塔市| 香河县| 泸水县| 永州市| 崇文区| 康马县| 锡林浩特市| 亚东县| 陵水| 长春市| 临高县| 左云县| 什邡市| 平江县| 贺州市| 达州市| 绥棱县| 重庆市| 乐东| 历史| 岳阳市| 巩义市| 临泽县| 四子王旗| 毕节市| 宽甸|