派博傳思國(guó)際中心

標(biāo)題: Titlebook: Combinatorial and Geometric Group Theory; Dortmund and Ottawa- Oleg Bogopolski,Inna Bumagin,Enric Ventura Conference proceedings 2010 Birkh [打印本頁(yè)]

作者: 威風(fēng)    時(shí)間: 2025-3-21 19:00
書目名稱Combinatorial and Geometric Group Theory影響因子(影響力)




書目名稱Combinatorial and Geometric Group Theory影響因子(影響力)學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory網(wǎng)絡(luò)公開度




書目名稱Combinatorial and Geometric Group Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory被引頻次




書目名稱Combinatorial and Geometric Group Theory被引頻次學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory年度引用




書目名稱Combinatorial and Geometric Group Theory年度引用學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory讀者反饋




書目名稱Combinatorial and Geometric Group Theory讀者反饋學(xué)科排名





作者: 媽媽不開心    時(shí)間: 2025-3-21 21:30

作者: ADORE    時(shí)間: 2025-3-22 04:11

作者: syring    時(shí)間: 2025-3-22 08:16
Solving Random Equations in Garside Groups Using Length Functions,uched in earlier expositions. We then focus on the main ingredient in these attacks: Length functions..After a self-contained introduction to Garside groups, we describe length functions induced by the greedy normal form and by the rational normal form in these groups, and compare their worst-case p
作者: AVANT    時(shí)間: 2025-3-22 11:53

作者: Highbrow    時(shí)間: 2025-3-22 16:22

作者: Highbrow    時(shí)間: 2025-3-22 21:01
The ,,-action on the Product of the Two Limit Trees for an Iwip Automorphism, .+(.) × .+(..) of the (non-simplicial) forward limit ?-trees for . and .., is properly discontinuous. Alternative proofs, derived from deeper results, have been given by Bestvina-Feighn-Handel [.] and later by Levitt-Lustig [.]; compare also Guirardel [.].
作者: 拍下盜公款    時(shí)間: 2025-3-22 23:40

作者: 出價(jià)    時(shí)間: 2025-3-23 04:43

作者: panorama    時(shí)間: 2025-3-23 07:06

作者: 脫落    時(shí)間: 2025-3-23 11:49
Forum Dienstleistungsmanagementechniques to study cosets, double cosets, and Schreier representatives of finitely generated subgroups of . with an eye on complexity of algorithmic problems in free products with amalgamation and HNN extensions of groups. Mathematics Subject Classification (2000). 20E05.
作者: accordance    時(shí)間: 2025-3-23 14:16
https://doi.org/10.1007/978-3-658-37344-3olving equations in a free group which has Makanin-Razborov process as a prototype. We also explain how we use this process to obtain the structure theorem for finitely generated fully residually free groups and many other results.
作者: Gastric    時(shí)間: 2025-3-23 21:00

作者: 潛伏期    時(shí)間: 2025-3-23 23:56

作者: 敘述    時(shí)間: 2025-3-24 05:30

作者: 手勢(shì)    時(shí)間: 2025-3-24 08:17

作者: Palate    時(shí)間: 2025-3-24 11:02

作者: 我要威脅    時(shí)間: 2025-3-24 17:00

作者: 固定某物    時(shí)間: 2025-3-24 20:11

作者: Gullible    時(shí)間: 2025-3-25 00:01
Jens P?ppelbu?,Martin Ebel,David Jaspert well behaved and convenient to use, and give several examples of classes of groups for which they can be constructed from natural presentations. We describe a Knuth-Bendix completion process to construct such systems, show how they may be found with the help of Stallings’ pregroups and conversely may be used to construct such pregroups.
作者: Thyroxine    時(shí)間: 2025-3-25 05:05

作者: 琺瑯    時(shí)間: 2025-3-25 11:34

作者: 騷擾    時(shí)間: 2025-3-25 15:35
An Application of Word Combinatorics to Decision Problems in Group Theory,f successful, implies that the subgroup under consideration has solvable membership problem with a simple solution. The proof of the solvability of the membership problem relies on word combinatorics in an essential way.
作者: 刪減    時(shí)間: 2025-3-25 17:38

作者: 蛙鳴聲    時(shí)間: 2025-3-25 20:20

作者: 聰明    時(shí)間: 2025-3-26 00:40
,Limits of Thompson’s Group ,,e .., (.., x.) ∈ . ∈ N, be a family of groups isomorphic to . and marked by .+2 elements. If the sequence (..). is convergent in the space of marked groups and G is the corresponding limit we say that . is an .-limit group. The paper is devoted to a description of .-limit groups.
作者: 放棄    時(shí)間: 2025-3-26 07:53

作者: 搖曳的微光    時(shí)間: 2025-3-26 09:50

作者: 思鄉(xiāng)病    時(shí)間: 2025-3-26 16:29

作者: 不幸的人    時(shí)間: 2025-3-26 17:51

作者: cringe    時(shí)間: 2025-3-27 00:45
Forum Dienstleistungsmanagementf successful, implies that the subgroup under consideration has solvable membership problem with a simple solution. The proof of the solvability of the membership problem relies on word combinatorics in an essential way.
作者: Invertebrate    時(shí)間: 2025-3-27 01:49

作者: 保全    時(shí)間: 2025-3-27 05:52

作者: 反話    時(shí)間: 2025-3-27 10:50
Dennis Schendzielarz,Sascha Alavi and Kassabov and Matucci in [.]. Thanks to the interplay between the techniques, we produce a simplified point of view of conjugacy that allows us to easily recover centralizers and lends itself to generalization.
作者: 個(gè)阿姨勾引你    時(shí)間: 2025-3-27 15:25

作者: intolerance    時(shí)間: 2025-3-27 19:24
Forum Dienstleistungsmanagemente .., (.., x.) ∈ . ∈ N, be a family of groups isomorphic to . and marked by .+2 elements. If the sequence (..). is convergent in the space of marked groups and G is the corresponding limit we say that . is an .-limit group. The paper is devoted to a description of .-limit groups.
作者: 退潮    時(shí)間: 2025-3-28 01:09
Combinatorial and Geometric Group Theory978-3-7643-9911-5Series ISSN 2297-0215 Series E-ISSN 2297-024X
作者: obligation    時(shí)間: 2025-3-28 03:56

作者: 人類學(xué)家    時(shí)間: 2025-3-28 06:44
Forum Dienstleistungsmanagementf successful, implies that the subgroup under consideration has solvable membership problem with a simple solution. The proof of the solvability of the membership problem relies on word combinatorics in an essential way.
作者: 較早    時(shí)間: 2025-3-28 14:25

作者: 過份艷麗    時(shí)間: 2025-3-28 14:55

作者: shrill    時(shí)間: 2025-3-28 18:59
Forum Dienstleistungsmanagemente .., (.., x.) ∈ . ∈ N, be a family of groups isomorphic to . and marked by .+2 elements. If the sequence (..). is convergent in the space of marked groups and G is the corresponding limit we say that . is an .-limit group. The paper is devoted to a description of .-limit groups.
作者: Vital-Signs    時(shí)間: 2025-3-29 00:32
https://doi.org/10.1007/978-3-7643-9911-5Group theory; algebraic geometry; combinatorics; geometric group theory; graphs
作者: Aphorism    時(shí)間: 2025-3-29 03:29

作者: paltry    時(shí)間: 2025-3-29 10:39
Forum DienstleistungsmanagementWe present a coarse convexity result for the dynamics of free group automorphisms: Given an automorphism . of a finitely generated free group ., we show that for all . ∈ . and 0 ≤ . ≤ ., the length of ..(.) is bounded above by a constant multiple of the sum of the lengths of x and ..(.), with the constant depending only on ..
作者: 嘲弄    時(shí)間: 2025-3-29 13:24

作者: 經(jīng)典    時(shí)間: 2025-3-29 18:06
Forum DienstleistungsmanagementIn the paper we consider homogeneous systems of linear equations and classify coordinate monoids over the additive monoid of natural numbers which are defined by such systems. Further, we apply our results to the wide class of commutative monoids.
作者: OPINE    時(shí)間: 2025-3-29 20:39

作者: 否決    時(shí)間: 2025-3-30 00:26

作者: magnate    時(shí)間: 2025-3-30 05:23

作者: 非秘密    時(shí)間: 2025-3-30 10:30

作者: 情節(jié)劇    時(shí)間: 2025-3-30 14:18
Generating Tuples of Virtually Free Groups,We give a complete description of all generating tuples of a virtually free group, i.e., we give a parametrization of ., Г) where . ∈ N and G is a virtually free group.
作者: 用不完    時(shí)間: 2025-3-30 16:56
Solving Random Equations in Garside Groups Using Length Functions,.For arbitrary .., finding the geodesic length of an element is NP-hard, by a 1991 result of by Paterson and Razborov. We show that a good estimation of the geodesic length of an element of .. in Artin’s presentation is measuring the length of its rational form in the . presentation. This is proved




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
张家界市| 石首市| 昆山市| 潞西市| 甘孜县| 洛南县| 庆安县| 吕梁市| 宁阳县| 凤翔县| 固镇县| 安国市| 淮安市| 德阳市| 和顺县| 四会市| 房山区| 衡东县| 台中市| 台前县| 涞源县| 翁源县| 镇宁| 乡宁县| 休宁县| 泸水县| 甘孜县| 永登县| 万源市| 乌恰县| 论坛| 金坛市| 巴中市| 威海市| 南靖县| 芦溪县| 临沂市| 屏东市| 家居| 屯留县| 北安市|