派博傳思國際中心

標(biāo)題: Titlebook: Cohomological Theory of Dynamical Zeta Functions; Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn [打印本頁]

作者: 獨(dú)裁者    時(shí)間: 2025-3-21 16:34
書目名稱Cohomological Theory of Dynamical Zeta Functions影響因子(影響力)




書目名稱Cohomological Theory of Dynamical Zeta Functions影響因子(影響力)學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions網(wǎng)絡(luò)公開度




書目名稱Cohomological Theory of Dynamical Zeta Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions被引頻次




書目名稱Cohomological Theory of Dynamical Zeta Functions被引頻次學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions年度引用




書目名稱Cohomological Theory of Dynamical Zeta Functions年度引用學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions讀者反饋




書目名稱Cohomological Theory of Dynamical Zeta Functions讀者反饋學(xué)科排名





作者: 輕彈    時(shí)間: 2025-3-21 21:42
The Verma Complexes on , and ,, complexes for A E -No to some Zelobenko complexes on Sn.. The analogous results for complexes of currents are used in the last section to prove Theorem 1.4. The convention introduced at the end of Chapter 4 is assumed to be in force throughout.
作者: 心痛    時(shí)間: 2025-3-22 03:48

作者: CERE    時(shí)間: 2025-3-22 05:18

作者: Connotation    時(shí)間: 2025-3-22 09:54

作者: 小步走路    時(shí)間: 2025-3-22 14:50
Harmonic Currents and Canonical Complexes, such that where H. is the orthogonal projection onto the harmonic p-forms (see [65], [301]). The latter identity implies the decompositionfor . E 1P (M), and if we assume as above that w is a finite sum of eigenforms for the first . eigenvalues then we obtain the formula
作者: 小步走路    時(shí)間: 2025-3-22 17:41
Book 2001w of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were sugges
作者: URN    時(shí)間: 2025-3-22 22:22
0743-1643 odesic flow of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and w
作者: 蔑視    時(shí)間: 2025-3-23 03:29

作者: 光明正大    時(shí)間: 2025-3-23 08:52

作者: osteocytes    時(shí)間: 2025-3-23 09:56

作者: invulnerable    時(shí)間: 2025-3-23 16:24
Divisors and Harmonic Currents,f the Ruelle zeta function . of the geodesic flow of a compact hyperbolic 4-manifold . in terms of harmonic currents on . The appropriate notion of harmonicity involves additional conditions along the leaves of P.
作者: needle    時(shí)間: 2025-3-23 21:17
https://doi.org/10.1007/978-3-0348-8340-5Globale Analysis; differential equation; dynamische Systeme; harmonic analysis; measure
作者: 向外供接觸    時(shí)間: 2025-3-23 23:30
978-3-0348-9524-8Birkh?user Verlag 2001
作者: FECK    時(shí)間: 2025-3-24 02:54
https://doi.org/10.1007/978-1-4614-5511-0e (twisted) geodesic flows. The main motivation of the constructions discussed here is to find suitable frameworks for characterization of the divisors of the zeta functions..in terms of currents on.which are specified by.with respect to the foliations P.. Although we shall prove in Chapter 5 and Ch
作者: 泥沼    時(shí)間: 2025-3-24 07:17

作者: Enzyme    時(shí)間: 2025-3-24 11:41

作者: Optic-Disk    時(shí)間: 2025-3-24 17:44
https://doi.org/10.1007/978-1-4614-5511-0divisor of the Selberg zeta function of the a-twisted geodesic flow proved in Chapter 3 Section 3.3 is related to its characterizations in terms of a-twisted harmonic currents on . In the third section we prove some results on a-twisted globally harmonic currents which are . along the leaves of 0..
作者: RADE    時(shí)間: 2025-3-24 20:49
Progress in Mathematicshttp://image.papertrans.cn/c/image/229246.jpg
作者: vitreous-humor    時(shí)間: 2025-3-25 01:41
Statistics for Industry and TechnologyIn this chapter we discuss the motivations of the cohomological theory of the zeta functions and review the contents of the book.
作者: Fermentation    時(shí)間: 2025-3-25 03:51

作者: Angiogenesis    時(shí)間: 2025-3-25 08:05

作者: 粗野    時(shí)間: 2025-3-25 14:07
Mayuri Kalita,Kandarpa Kumar SarmaThe present chapter is devoted to the discussion of further developments and the formulation of some open problems.
作者: Omnipotent    時(shí)間: 2025-3-25 19:21

作者: Oligarchy    時(shí)間: 2025-3-25 21:55
Introduction,In this chapter we discuss the motivations of the cohomological theory of the zeta functions and review the contents of the book.
作者: Comprise    時(shí)間: 2025-3-26 02:16
Preliminaries,In the present chapter we fix some notation and collect a few results which will be important later on.
作者: LAPSE    時(shí)間: 2025-3-26 06:14
Zeta Functions of the Geodesic Flow of Compact Locally Symmetric Manifolds,In the present chapter we consider from . different perspectives the zeta function of the σ-twisted geodesic flow of a compact locally symmetric space X =Y of rank one.
作者: 開玩笑    時(shí)間: 2025-3-26 11:36

作者: 掙扎    時(shí)間: 2025-3-26 15:46
A Summary of Important Formulas,THE RUELLE ZETA FUNCTION: THE SELBERG ZETA FUNCTION:
作者: GNAT    時(shí)間: 2025-3-26 19:19

作者: 形狀    時(shí)間: 2025-3-27 00:57
Cohomological Theory of Dynamical Zeta Functions978-3-0348-8340-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: modish    時(shí)間: 2025-3-27 02:11
https://doi.org/10.1007/978-1-4614-5511-0 complexes for A E -No to some Zelobenko complexes on Sn.. The analogous results for complexes of currents are used in the last section to prove Theorem 1.4. The convention introduced at the end of Chapter 4 is assumed to be in force throughout.
作者: 手段    時(shí)間: 2025-3-27 06:03

作者: CHOKE    時(shí)間: 2025-3-27 10:30

作者: 彈藥    時(shí)間: 2025-3-27 16:17
8樓
作者: Gourmet    時(shí)間: 2025-3-27 18:28
9樓
作者: Binge-Drinking    時(shí)間: 2025-3-27 22:52
9樓
作者: debase    時(shí)間: 2025-3-28 06:09
9樓
作者: crease    時(shí)間: 2025-3-28 07:03
9樓
作者: Concomitant    時(shí)間: 2025-3-28 14:10
10樓
作者: arthroplasty    時(shí)間: 2025-3-28 16:14
10樓
作者: cavity    時(shí)間: 2025-3-28 19:24
10樓
作者: Fecundity    時(shí)間: 2025-3-29 00:26
10樓




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
襄汾县| 乐业县| 大名县| 沽源县| 富民县| 泸州市| 正宁县| 满洲里市| 泗阳县| 巢湖市| 兰坪| 祁东县| 新平| 西贡区| 芮城县| 宁城县| 汪清县| 泰安市| 无为县| 渭源县| 上杭县| 双辽市| 仁化县| 崇义县| 开鲁县| 伊川县| 分宜县| 长葛市| 和田县| 安塞县| 灵川县| 容城县| 六枝特区| 柳州市| 来安县| 集贤县| 江口县| 丹东市| 湘阴县| 迁西县| 漳平市|