標(biāo)題: Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 20072nd edition Birkh?user Basel 2007 Classical geometry.Fin [打印本頁(yè)] 作者: panache 時(shí)間: 2025-3-21 18:18
書目名稱Classical Geometries in Modern Contexts影響因子(影響力)
書目名稱Classical Geometries in Modern Contexts影響因子(影響力)學(xué)科排名
書目名稱Classical Geometries in Modern Contexts網(wǎng)絡(luò)公開(kāi)度
書目名稱Classical Geometries in Modern Contexts網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書目名稱Classical Geometries in Modern Contexts被引頻次
書目名稱Classical Geometries in Modern Contexts被引頻次學(xué)科排名
書目名稱Classical Geometries in Modern Contexts年度引用
書目名稱Classical Geometries in Modern Contexts年度引用學(xué)科排名
書目名稱Classical Geometries in Modern Contexts讀者反饋
書目名稱Classical Geometries in Modern Contexts讀者反饋學(xué)科排名
作者: Dawdle 時(shí)間: 2025-3-21 23:45 作者: 枯燥 時(shí)間: 2025-3-22 01:15
Book 20072nd edition(general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of M?bius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. Th作者: monopoly 時(shí)間: 2025-3-22 08:30 作者: outset 時(shí)間: 2025-3-22 11:53 作者: Cubicle 時(shí)間: 2025-3-22 15:16 作者: Cubicle 時(shí)間: 2025-3-22 21:07
Translation Groups,hers we shall use later on, see the section . of this book. Instead of . (.) we will write . or, occasionally, .. The laws above are then the following: . for all . ∈ ., λ ∈ ?, and .:= . > 0 for all . ∈ .{0}. Instead of (.) we mostly will speak of ., hence tacitly assuming that . is equipped with a 作者: 我沒(méi)有強(qiáng)迫 時(shí)間: 2025-3-23 00:51
-Projective Mappings, Isomorphism Theorems, we do not exclude the case that there exist infinite linearly independent subsets of . or .. One of the important results of this chapter is that the hyperbolic geometries (.(.)), (.(.)) over . = (.), . = (.), respectively, . the group of hyperbolic motions, are isomorphic (see p. 16f) if, and only作者: 無(wú)所不知 時(shí)間: 2025-3-23 05:05 作者: faculty 時(shí)間: 2025-3-23 08:47 作者: 斷言 時(shí)間: 2025-3-23 10:32
Tiziana Banini,Oana-Ramona IlovanAlso in this chapter . denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.作者: 扔掉掐死你 時(shí)間: 2025-3-23 16:25 作者: 步兵 時(shí)間: 2025-3-23 18:51
Euclidean and Hyperbolic Geometry, designates again an arbitrary real inner product space containing two linearly independent elements. As throughout the whole book, we do not exclude the case that there exists an infinite and linearly independent subset of ..作者: 原始 時(shí)間: 2025-3-24 01:00
,Sphere Geometries of M?bius and Lie,Also in this chapter . denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.作者: coltish 時(shí)間: 2025-3-24 05:54
Lorentz Transformations,As in the chapters before, . denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.作者: 浮夸 時(shí)間: 2025-3-24 09:38
https://doi.org/10.1007/978-3-7643-8541-5Classical geometry; Finite; Hyperbolic geometry; Inner product space; Lie; Lorentz transformation; Natural作者: 使顯得不重要 時(shí)間: 2025-3-24 13:11 作者: mighty 時(shí)間: 2025-3-24 17:55
Walter BenzDimension-free presentation.Inclusion of proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses.Common presentation for finite and infinite dimensional re作者: 不可思議 時(shí)間: 2025-3-24 19:15
http://image.papertrans.cn/c/image/227074.jpg作者: trigger 時(shí)間: 2025-3-24 23:39 作者: 羽毛長(zhǎng)成 時(shí)間: 2025-3-25 04:21 作者: RACE 時(shí)間: 2025-3-25 10:26 作者: 范圍廣 時(shí)間: 2025-3-25 12:32
7樓作者: Stagger 時(shí)間: 2025-3-25 19:44
7樓作者: Flagging 時(shí)間: 2025-3-25 22:05
7樓作者: AND 時(shí)間: 2025-3-26 00:18
8樓作者: 類型 時(shí)間: 2025-3-26 08:11
8樓作者: agglomerate 時(shí)間: 2025-3-26 08:48
8樓作者: 鳴叫 時(shí)間: 2025-3-26 14:12
9樓作者: endoscopy 時(shí)間: 2025-3-26 18:19
9樓作者: 行為 時(shí)間: 2025-3-26 23:53
9樓作者: 新字 時(shí)間: 2025-3-27 01:06
9樓作者: 維持 時(shí)間: 2025-3-27 08:45
10樓作者: CODE 時(shí)間: 2025-3-27 12:04
10樓作者: GLUT 時(shí)間: 2025-3-27 17:41
10樓作者: 簡(jiǎn)略 時(shí)間: 2025-3-27 21:40
10樓