派博傳思國際中心

標(biāo)題: Titlebook: Chain Conditions in Commutative Rings; Ali Benhissi Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license [打印本頁]

作者: 極大    時間: 2025-3-21 17:07
書目名稱Chain Conditions in Commutative Rings影響因子(影響力)




書目名稱Chain Conditions in Commutative Rings影響因子(影響力)學(xué)科排名




書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度




書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chain Conditions in Commutative Rings被引頻次




書目名稱Chain Conditions in Commutative Rings被引頻次學(xué)科排名




書目名稱Chain Conditions in Commutative Rings年度引用




書目名稱Chain Conditions in Commutative Rings年度引用學(xué)科排名




書目名稱Chain Conditions in Commutative Rings讀者反饋




書目名稱Chain Conditions in Commutative Rings讀者反饋學(xué)科排名





作者: Concerto    時間: 2025-3-21 22:39
http://image.papertrans.cn/c/image/223379.jpg
作者: Encapsulate    時間: 2025-3-22 01:43
https://doi.org/10.1007/978-3-031-09898-7S-Noetherian; S-Artinian; Nonnil-Noetherian; Strongly Hopfian; polynomials; power series; almost principal
作者: 鈍劍    時間: 2025-3-22 05:53
978-3-031-10147-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: dragon    時間: 2025-3-22 10:38
Tables 23 - 32, Figs. 90 - 114,ed in many areas including commutative algebra and algebraic geometry. The Noetherian property was originally due to the mathematician Noether who first considered a relation between the ascending chain condition on ideals and the finitely generatedness of ideals.
作者: FIN    時間: 2025-3-22 13:07
Tables 23 - 32, Figs. 90 - 114,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to differe
作者: FIN    時間: 2025-3-22 20:47

作者: 沖突    時間: 2025-3-23 00:29

作者: Nucleate    時間: 2025-3-23 03:37
Tables 23 - 32, Figs. 90 - 114,In this chapter, all the rings considered are commutative with unity. A multiplicative set contains 1 and does not contain 0.
作者: PAD416    時間: 2025-3-23 09:29
1.0.3 List of symbols and abbreviations,Let . be an integral domain. In this chapter, we define a notion of almost principal for the domain .[.]. Then we characterize those . with this property. All the rings considered in this chapter are commutative with identity.
作者: intellect    時間: 2025-3-23 12:26

作者: ALLEY    時間: 2025-3-23 17:23

作者: 隨意    時間: 2025-3-23 21:27

作者: 吵鬧    時間: 2025-3-24 00:14

作者: phase-2-enzyme    時間: 2025-3-24 06:22

作者: 滋養(yǎng)    時間: 2025-3-24 06:57
Strongly Hopfian, Endo-Noetherian, and Isonoetherian Rings,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to different extensions of a ring ..
作者: 淘氣    時間: 2025-3-24 11:12
Textbook 2022papers. The majority of chapters are self-contained, and all include detailed proofs, a wealth of examples and solved exercises, and a complete reference list. The topics covered include S-Noetherian, S-Artinian, Nonnil-Noetherian, and Strongly Hopfian properties on commutative rings and their trans
作者: 嚴(yán)峻考驗    時間: 2025-3-24 17:34
Textbook 2022fer to extensions such as polynomial and power series rings, and more. Though primarily intended for readers with a background in commutative rings, modules, polynomials and power series extension rings, the book can also be used as a reference guide to support graduate-level algebra courses, or as a starting point for further research.
作者: irreducible    時間: 2025-3-24 22:18

作者: Offset    時間: 2025-3-25 01:48

作者: REP    時間: 2025-3-25 05:26

作者: 毀壞    時間: 2025-3-25 09:05

作者: 競選運動    時間: 2025-3-25 14:41
7樓
作者: 真    時間: 2025-3-25 17:43
7樓
作者: 信任    時間: 2025-3-25 22:55
7樓
作者: 叢林    時間: 2025-3-26 00:31
8樓
作者: geriatrician    時間: 2025-3-26 04:30
8樓
作者: 強(qiáng)制性    時間: 2025-3-26 10:51
8樓
作者: 削減    時間: 2025-3-26 13:36
9樓
作者: Lime石灰    時間: 2025-3-26 17:21
9樓
作者: 拾落穗    時間: 2025-3-27 00:37
9樓
作者: 同謀    時間: 2025-3-27 01:35
9樓
作者: CAGE    時間: 2025-3-27 08:09
10樓
作者: CERE    時間: 2025-3-27 13:12
10樓
作者: LARK    時間: 2025-3-27 15:08
10樓
作者: 險代理人    時間: 2025-3-27 18:05
10樓




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
宁阳县| 江西省| 宜川县| 林州市| 馆陶县| 延庆县| 西乌珠穆沁旗| 城市| 凌云县| 竹山县| 陵川县| 灌阳县| 铁岭县| 宣汉县| 大港区| 黎城县| 唐河县| 阿拉善右旗| 灵山县| 澄城县| 左权县| 丰台区| 甘泉县| 南川市| 那曲县| 祥云县| 岐山县| 陕西省| 永登县| 资溪县| 宁德市| 广昌县| 连云港市| 宾阳县| 莲花县| 顺义区| 定安县| 虹口区| 梁平县| 高平市| 青州市|