派博傳思國(guó)際中心

標(biāo)題: Titlebook: CR Submanifolds of Kaehlerian and Sasakian Manifolds; Kentaro Yano,Masahiro Kon Book 1983 Springer Science+Business Media New York 1983 ma [打印本頁(yè)]

作者: 債務(wù)人    時(shí)間: 2025-3-21 18:32
書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds影響因子(影響力)




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds被引頻次




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds被引頻次學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds讀者反饋




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds讀者反饋學(xué)科排名





作者: 反對(duì)    時(shí)間: 2025-3-21 20:59

作者: reception    時(shí)間: 2025-3-22 01:04

作者: 看法等    時(shí)間: 2025-3-22 07:37
Hypersurfaces,Let M be a real (2n?1)-dimensional hypersurfce of a Kaehlerian manifold . of complex dimension n (real dimension 2n). Then M is obviously a generic submanifold of .. We denote by C a unit normal of M in . and put ..
作者: 開(kāi)頭    時(shí)間: 2025-3-22 09:14
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
作者: faculty    時(shí)間: 2025-3-22 16:54
https://doi.org/10.1007/1-4020-4878-5 of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
作者: faculty    時(shí)間: 2025-3-22 17:21

作者: 6Applepolish    時(shí)間: 2025-3-22 22:29
978-1-4684-9426-6Springer Science+Business Media New York 1983
作者: 起波瀾    時(shí)間: 2025-3-23 05:07
Progress in Mathematicshttp://image.papertrans.cn/c/image/220550.jpg
作者: 充氣女    時(shí)間: 2025-3-23 05:46
CR Submanifolds of Kaehlerian and Sasakian Manifolds978-1-4684-9424-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: Anthropoid    時(shí)間: 2025-3-23 10:43

作者: Obloquy    時(shí)間: 2025-3-23 16:37
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
作者: Allure    時(shí)間: 2025-3-23 20:57
Structures on Riemannian Manifolds,ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
作者: Saline    時(shí)間: 2025-3-23 23:28

作者: FLAG    時(shí)間: 2025-3-24 05:15

作者: Anticonvulsants    時(shí)間: 2025-3-24 09:16
Submanifolds,he ambient manifold .to simplify the notation because it may cause no confusion. Let T(M) and T(M). denote the tangent and normal bundle of M respectively. The metric g and the connection .on .lead to invariant inner products and the connections on T(M) and T(M). We will define a connection on M explicitely.
作者: uncertain    時(shí)間: 2025-3-24 13:14

作者: Congestion    時(shí)間: 2025-3-24 17:55
Submanifolds, of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
作者: innate    時(shí)間: 2025-3-24 21:19
6樓
作者: Aspiration    時(shí)間: 2025-3-25 00:57
6樓
作者: Collar    時(shí)間: 2025-3-25 07:22
6樓
作者: 無(wú)可爭(zhēng)辯    時(shí)間: 2025-3-25 07:51
7樓
作者: restrain    時(shí)間: 2025-3-25 13:20
7樓
作者: 領(lǐng)巾    時(shí)間: 2025-3-25 16:09
7樓
作者: 絕食    時(shí)間: 2025-3-25 22:39
7樓
作者: Geyser    時(shí)間: 2025-3-26 03:34
8樓
作者: 短程旅游    時(shí)間: 2025-3-26 05:33
8樓
作者: 生來(lái)    時(shí)間: 2025-3-26 11:44
8樓
作者: 一小塊    時(shí)間: 2025-3-26 14:51
9樓
作者: 協(xié)奏曲    時(shí)間: 2025-3-26 19:24
9樓
作者: 燈泡    時(shí)間: 2025-3-27 00:12
9樓
作者: POWER    時(shí)間: 2025-3-27 02:16
9樓
作者: 禍害隱伏    時(shí)間: 2025-3-27 08:27
10樓
作者: Hdl348    時(shí)間: 2025-3-27 11:27
10樓
作者: callous    時(shí)間: 2025-3-27 15:10
10樓
作者: 拋物線(xiàn)    時(shí)間: 2025-3-27 18:37
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
锡林浩特市| 永靖县| 固安县| 沭阳县| 富顺县| 保康县| 定结县| 阳谷县| 灌南县| 晋州市| 北海市| 龙南县| 宜都市| 大新县| 江川县| 西林县| 芜湖县| 梁山县| 莆田市| 彭山县| 仁化县| 汉川市| 阿拉善右旗| 甘谷县| 青冈县| 铜山县| 济宁市| 敖汉旗| 新郑市| 西峡县| 大同县| 上栗县| 沧源| 嵊州市| 巴中市| 会宁县| 洞头县| 嘉鱼县| 桃园市| 忻城县| 吐鲁番市|