派博傳思國際中心

標題: Titlebook: Beginning Mathematica and Wolfram for Data Science; Applications in Data Jalil Villalobos Alva Book 2024Latest edition Jalil Villalobos Alv [打印本頁]

作者: 明顯    時間: 2025-3-21 17:53
書目名稱Beginning Mathematica and Wolfram for Data Science影響因子(影響力)




書目名稱Beginning Mathematica and Wolfram for Data Science影響因子(影響力)學科排名




書目名稱Beginning Mathematica and Wolfram for Data Science網(wǎng)絡(luò)公開度




書目名稱Beginning Mathematica and Wolfram for Data Science網(wǎng)絡(luò)公開度學科排名




書目名稱Beginning Mathematica and Wolfram for Data Science被引頻次




書目名稱Beginning Mathematica and Wolfram for Data Science被引頻次學科排名




書目名稱Beginning Mathematica and Wolfram for Data Science年度引用




書目名稱Beginning Mathematica and Wolfram for Data Science年度引用學科排名




書目名稱Beginning Mathematica and Wolfram for Data Science讀者反饋




書目名稱Beginning Mathematica and Wolfram for Data Science讀者反饋學科排名





作者: Alveoli    時間: 2025-3-21 21:10

作者: addict    時間: 2025-3-22 00:40

作者: fibula    時間: 2025-3-22 07:54

作者: 雄辯    時間: 2025-3-22 12:02
Metal Catalysed Reactions in Ionic Liquidslized functions of the Wolfram Language for the same purpose, using statistical functions. The Wolfram Language is a useful tool for statistics and probability. Mathematica has the functions to perform numerical and approximate calculations for descriptive statistics and random distributions, random
作者: Conserve    時間: 2025-3-22 15:30

作者: ensemble    時間: 2025-3-22 20:36
Carbon-Carbon Coupling Reactions,, how to use the commands for different layers, and the most common layers. You learn how to enter data into the layers by the net port and the different forms of equivalent expression of the layers. This topic is followed by how to distinguish different layers by their symbol. You see that layers c
作者: Lamina    時間: 2025-3-22 22:37
https://doi.org/10.1007/979-8-8688-0348-2programming; data science; Wolfram; Mathematica; language; big data; machine learning; cloud; analytics; codi
作者: 牛的細微差別    時間: 2025-3-23 04:44

作者: 脆弱么    時間: 2025-3-23 08:51
Jalil Villalobos AlvaThe first introduction to data science using Mathematica and Wolfram.Covers popular in-demand topics such as machine learning, neural networks, and new LLM functionalities.Includes freely available so
作者: 感染    時間: 2025-3-23 13:44

作者: CANDY    時間: 2025-3-23 16:25

作者: 方舟    時間: 2025-3-23 18:32

作者: Parameter    時間: 2025-3-24 00:44

作者: 浪費時間    時間: 2025-3-24 02:21

作者: bibliophile    時間: 2025-3-24 07:45
Data Exploration,This chapter looks at the basics of data management through the Wolfram Data Repository online platform and its use in Mathematica. You also learn how data is viewed inside datasets and how to apply user functions and commands.
作者: occurrence    時間: 2025-3-24 14:08

作者: forebear    時間: 2025-3-24 18:02
ks, and new LLM functionalities.Includes freely available so.Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. This second edition introduces the latest LLM Wolfram capabilities, delves into the exploration
作者: ALIAS    時間: 2025-3-24 20:00

作者: Criteria    時間: 2025-3-25 02:53

作者: GET    時間: 2025-3-25 04:19
Import and Export,at has been calculated or obtained externally can be transferred to Mathematica and exported for use on other platforms. However, Mathematica has tools to handle different data types (numbers, text, audio, graphics, and images). This chapter focuses on working with numerical and categorical data, the most frequently used data types for analysis.
作者: considerable    時間: 2025-3-25 09:38
Statistical Data Analysis,obability. Mathematica has the functions to perform numerical and approximate calculations for descriptive statistics and random distributions, random numbers, and random sampling methods, as you see in this section.
作者: 細絲    時間: 2025-3-25 13:22
https://doi.org/10.1007/1-4020-3915-8re fundamental for the correct construction using the Wolfram Language are explained. This part of the book uses examples of known datasets such as the Fisher’s Irises, Boston Homes, and Titanic datasets.
作者: 品牌    時間: 2025-3-25 16:32
Machine Learning with the Wolfram Language,re fundamental for the correct construction using the Wolfram Language are explained. This part of the book uses examples of known datasets such as the Fisher’s Irises, Boston Homes, and Titanic datasets.
作者: 軍械庫    時間: 2025-3-25 22:08
https://doi.org/10.1007/978-1-60327-403-6otebooks simultaneously support code and text. In this way, a notebook is a computable text file. Next, you inspect various add-ons that can be employed within a notebook to help the user maximize their code’s capabilities.
作者: Project    時間: 2025-3-26 03:00
https://doi.org/10.1007/1-4020-3915-8purposes. The chapter ends with study list manipulation techniques—retrieving, assigning, or removing data—and structuring lists to offer a general guide to understanding list manipulation in the Wolfram Language.
作者: 神圣將軍    時間: 2025-3-26 07:15
Carbon-Carbon Coupling Reactions,and why they are fundamental for proper dataset construction in the Wolfram Language. The chapter concludes with an overview of how associations are abstract constructions of hierarchical data representations.
作者: DAUNT    時間: 2025-3-26 09:34

作者: Modicum    時間: 2025-3-26 16:14
Data Manipulation,purposes. The chapter ends with study list manipulation techniques—retrieving, assigning, or removing data—and structuring lists to offer a general guide to understanding list manipulation in the Wolfram Language.
作者: ventilate    時間: 2025-3-26 16:49
Working with Data and Datasets,and why they are fundamental for proper dataset construction in the Wolfram Language. The chapter concludes with an overview of how associations are abstract constructions of hierarchical data representations.
作者: misanthrope    時間: 2025-3-26 23:39

作者: LIKEN    時間: 2025-3-27 04:55

作者: heart-murmur    時間: 2025-3-27 08:55

作者: Herpetologist    時間: 2025-3-27 12:40

作者: CLEAR    時間: 2025-3-27 17:40
Neural Networks with the Wolfram Language,ecoders and how these tools are used to construct a neural network model, depending on the task to be fulfilled. You then learn how these encoders and decoders are used to convert different data types to numeric arrays and how to convert the numeric arrays back to the initial data. You introduce the
作者: Lineage    時間: 2025-3-27 20:34
Carbon-Carbon Coupling Reactions,ecoders and how these tools are used to construct a neural network model, depending on the task to be fulfilled. You then learn how these encoders and decoders are used to convert different data types to numeric arrays and how to convert the numeric arrays back to the initial data. You introduce the
作者: Lipoprotein(A)    時間: 2025-3-28 00:48
, where data management and mathematical computations are needed. Along the way, you’ll appreciate how Mathematica provides an entirely integrated platform: its symbolic and numerical calculation result in a mi979-8-8688-0347-5979-8-8688-0348-2
作者: Kidney-Failure    時間: 2025-3-28 03:23

作者: CHURL    時間: 2025-3-28 10:02
Data Manipulation,s within the language. Numbers, digits, and simple ways to use them with common math functions are discussed. Next, you are introduced to lists of objects, representing, and generating lists, delving into data arrays and examining nested lists, vectors, matrixes, and relevant operations for various
作者: cliche    時間: 2025-3-28 13:08
Working with Data and Datasets,llowed by how to define user functions that can be used throughout a notebook. Next, you are introduced to how to write code in one of the powerful syntaxes used in the Wolfram Language, called pure functions. Naturally, you then delve into associations, explaining how to associate keys with values
作者: FLAGR    時間: 2025-3-28 16:56
Import and Export,a supports. Experimental data can come from different sources; the way to process this external data is to import it through Wolfram Language. Data that has been calculated or obtained externally can be transferred to Mathematica and exported for use on other platforms. However, Mathematica has tool
作者: Enervate    時間: 2025-3-28 20:00

作者: Bronchial-Tubes    時間: 2025-3-28 23:42

作者: Osteoporosis    時間: 2025-3-29 04:38

作者: Indebted    時間: 2025-3-29 10:41

作者: Respond    時間: 2025-3-29 15:12

作者: 外表讀作    時間: 2025-3-29 19:19

作者: AIL    時間: 2025-3-29 20:19

作者: forecast    時間: 2025-3-30 03:42
0937-7433 e Verl?sslichkeit durch "Facharztcheck": jedes von Studenten.Das Zweite - kompakt: die erste Hilfe vor dem "Hammerexamen"..Nur keine Panik! Zur effizienten Vorbereitung auf das 2. Staatsexamen gibt es jetzt die neue Prüfungsrepetitorienreihe aus dem Hause Springer...Von Studenten für Studenten: die




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
富阳市| 麻城市| 靖远县| 潜山县| 岳池县| 台南市| 确山县| 濮阳市| 福建省| 肇东市| 西林县| 德安县| 丹凤县| 鄯善县| 当涂县| 庆阳市| 综艺| 金川县| 祁阳县| 长阳| 讷河市| 通城县| 丰台区| 塔城市| 宜城市| 和林格尔县| 称多县| 朝阳县| 布尔津县| 双峰县| 乡宁县| 铅山县| 酒泉市| 杂多县| 收藏| 桦甸市| 东至县| 弋阳县| 泸溪县| 滨州市| 合川市|