派博傳思國際中心

標題: Titlebook: Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1999 Springer Science+Business Media Dordrecht 1999 Boundary v [打印本頁]

作者: GALL    時間: 2025-3-21 18:07
書目名稱Boundary Value Problems in the Spaces of Distributions影響因子(影響力)




書目名稱Boundary Value Problems in the Spaces of Distributions影響因子(影響力)學科排名




書目名稱Boundary Value Problems in the Spaces of Distributions網(wǎng)絡(luò)公開度




書目名稱Boundary Value Problems in the Spaces of Distributions網(wǎng)絡(luò)公開度學科排名




書目名稱Boundary Value Problems in the Spaces of Distributions被引頻次




書目名稱Boundary Value Problems in the Spaces of Distributions被引頻次學科排名




書目名稱Boundary Value Problems in the Spaces of Distributions年度引用




書目名稱Boundary Value Problems in the Spaces of Distributions年度引用學科排名




書目名稱Boundary Value Problems in the Spaces of Distributions讀者反饋




書目名稱Boundary Value Problems in the Spaces of Distributions讀者反饋學科排名





作者: Minuet    時間: 2025-3-21 20:42
The Cauchy Problem for General Hyperbolic Systems in the Complete Scale of Sobolev Type Spaces,ions (we mention here [Ler], [G?r], [Vla], [H?r], the survey [VoG], and the bibliography given there). In this note the Cauchy problem for a system strictly hyperbolic in the Leray—Volevich sense is studied in the complete scale of spaces of Sobolev type depending on real parameters . and τ; . chara
作者: 巨大沒有    時間: 2025-3-22 03:17
,Green’s Formula and Density of Solutions for General Parabolic Boundary Value Problems in Functionanormal boundary conditions, to study problems formally adjoint to parabolic ones with respect to the Green’s formula, and to investigate the density of the set of solutions of general parabolic boundary value problems and the derivatives of these solutions in functional spaces of vectorfunctions on
作者: 文件夾    時間: 2025-3-22 06:00
Elliptic Boundary Value Problems for General Systems of Equations with Additional Unknown Functions
作者: 逃避責任    時間: 2025-3-22 10:32

作者: remission    時間: 2025-3-22 13:24
Boundary Value Problems in the Spaces of Distributions
作者: gospel    時間: 2025-3-22 19:12
Boundary Value Problems in the Spaces of Distributions978-94-015-9275-8
作者: Addictive    時間: 2025-3-22 22:25

作者: Inexorable    時間: 2025-3-23 03:04

作者: 小鹿    時間: 2025-3-23 08:42

作者: Anthrp    時間: 2025-3-23 10:11
,Green’s Formulas and Theorems on Complete Collection of Isomorphisms for General Elliptic Boundary In the bounded domain . ? .. with the boundary . ? .. we consider the elliptic boundary value problem
作者: receptors    時間: 2025-3-23 16:22
Mathematics and Its Applicationshttp://image.papertrans.cn/b/image/190043.jpg
作者: 冥想后    時間: 2025-3-23 18:59
https://doi.org/10.1007/978-94-015-9275-8Boundary value problem; Operator theory; distribution; functional analysis; partial differential equatio
作者: intercede    時間: 2025-3-24 00:20

作者: 無辜    時間: 2025-3-24 05:50

作者: Immunization    時間: 2025-3-24 07:28

作者: 聯(lián)想記憶    時間: 2025-3-24 11:01
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k?) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ? = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k?), and Γ. ∩ Γ. =? for .
作者: Concrete    時間: 2025-3-24 16:40
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k?) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ? = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k?), and Γ. ∩ Γ. =? for .
作者: ABASH    時間: 2025-3-24 21:05
https://doi.org/10.1007/978-3-540-85818-8ions (we mention here [Ler], [G?r], [Vla], [H?r], the survey [VoG], and the bibliography given there). In this note the Cauchy problem for a system strictly hyperbolic in the Leray—Volevich sense is studied in the complete scale of spaces of Sobolev type depending on real parameters . and τ; . chara
作者: adipose-tissue    時間: 2025-3-24 23:15

作者: 跟隨    時間: 2025-3-25 06:47

作者: opinionated    時間: 2025-3-25 08:49

作者: peak-flow    時間: 2025-3-25 13:33
https://doi.org/10.1007/978-3-540-85818-8s the ‘more generalized’ the smaller . and τ; for sufficiently large . and τ the solution is an ordinary classical solution of the problem under consideration. In [R7] and [R8] such problems were studied for a single equation.
作者: 過份艷麗    時間: 2025-3-25 19:22

作者: FILLY    時間: 2025-3-25 23:25
7樓
作者: 過分自信    時間: 2025-3-26 02:25
8樓
作者: Commemorate    時間: 2025-3-26 06:39
8樓
作者: jungle    時間: 2025-3-26 09:20
8樓
作者: cacophony    時間: 2025-3-26 15:55
9樓
作者: fatty-streak    時間: 2025-3-26 19:53
9樓
作者: CRUDE    時間: 2025-3-27 00:27
9樓
作者: 使尷尬    時間: 2025-3-27 04:48
9樓
作者: PET-scan    時間: 2025-3-27 08:34
10樓
作者: Deject    時間: 2025-3-27 09:52
10樓
作者: 駭人    時間: 2025-3-27 14:33
10樓
作者: modest    時間: 2025-3-27 17:53
10樓




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
广安市| 偃师市| 乌拉特中旗| 灌南县| 扶余县| 青河县| 龙川县| 会昌县| 顺昌县| 泰兴市| 滕州市| 余庆县| 安宁市| 郁南县| 兰溪市| 南投县| 昂仁县| 洞头县| 平泉县| 永川市| 金溪县| 景宁| 津市市| 海城市| 耿马| 禹州市| 深泽县| 华容县| 贵阳市| 慈溪市| 双峰县| 邢台市| 江津市| 韩城市| 稷山县| 长沙县| 子洲县| 建湖县| 泗阳县| 临桂县| 兰坪|