派博傳思國(guó)際中心

標(biāo)題: Titlebook: Bifurcation without Parameters; Stefan Liebscher Book 2015 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr [打印本頁(yè)]

作者: 詭計(jì)    時(shí)間: 2025-3-21 17:30
書(shū)目名稱(chēng)Bifurcation without Parameters影響因子(影響力)




書(shū)目名稱(chēng)Bifurcation without Parameters影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Bifurcation without Parameters網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Bifurcation without Parameters網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Bifurcation without Parameters被引頻次




書(shū)目名稱(chēng)Bifurcation without Parameters被引頻次學(xué)科排名




書(shū)目名稱(chēng)Bifurcation without Parameters年度引用




書(shū)目名稱(chēng)Bifurcation without Parameters年度引用學(xué)科排名




書(shū)目名稱(chēng)Bifurcation without Parameters讀者反饋




書(shū)目名稱(chēng)Bifurcation without Parameters讀者反饋學(xué)科排名





作者: OGLE    時(shí)間: 2025-3-21 22:40

作者: Intuitive    時(shí)間: 2025-3-22 03:18

作者: 諂媚于人    時(shí)間: 2025-3-22 08:16
Degenerate Transcritical Bifurcation. At isolated points, one of the non-degeneracy conditions?(4.8,?4.9) may fail and codimension-two singularities appear. We shall discuss these degeneracies, first in a one-parameter-family of lines of equilibria and then along a two-dimensional equilibrium surface.
作者: etiquette    時(shí)間: 2025-3-22 12:06
Zero-Hopf Bifurcationsverse to a plane of equilibria. It turns out that instead we can study a one-parameter family of lines in a system depending on one parameter. Indeed, the rescaled normal form?(11.6) is the same in both cases.
作者: 包租車(chē)船    時(shí)間: 2025-3-22 16:45
Double-Hopf Bifurcationof equilibria. As we shall see, the drift direction at the Hopf lines play an important role. In the case of a parameter-dependent fixed line of equilibria, drifts at both Hopf-lines can be opposite and spiraling orbits appear, see Sect. 12.1. In the generic case with a plane of equilibria without p
作者: indifferent    時(shí)間: 2025-3-22 18:55
Application: Cosmological Models of Bianchi Type, the Tumbling Universe—to the matter content. Bianchi models, in particular, are homogeneous but anisotropic solutions. They are given by a five-dimensional ODE system in expansion-reduced variables and feature the Kasner circle . of equilibria and caps filled with heteroclinic orbits connecting equilibria on .. On the K
作者: 飲料    時(shí)間: 2025-3-22 21:17
Application: Fluid Flow in a Planar Channel, Spatial Dynamics with Reversible Bogdanov-Takens Bifurcreduction has been used to find time-independent bounded solutions at the onset of instability of the system when the Reynolds number increases. We regard bounded solutions as evolutions in the unbounded direction of a cross-sectional profile, and find a six-dimensional center manifold. Three conser
作者: AMEND    時(shí)間: 2025-3-23 01:26
Codimension-One Manifolds of Equilibriation also in Chaps. 5, 9, we removed the manifold of equilibria by multiplying with a singular factor 1∕. or 1∕.. This idea required that there is only one transverse direction to the manifold of equilibria. For such manifolds of codimension one, in phase space, we can generalize the idea.
作者: 內(nèi)向者    時(shí)間: 2025-3-23 07:07
0075-8434 heory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.978-3-319-10776-9978-3-319-10777-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: GLIDE    時(shí)間: 2025-3-23 13:17

作者: 消極詞匯    時(shí)間: 2025-3-23 16:34
Alec A. Macaulay MD,Jeremy T. Smith MD. At isolated points, one of the non-degeneracy conditions?(4.8,?4.9) may fail and codimension-two singularities appear. We shall discuss these degeneracies, first in a one-parameter-family of lines of equilibria and then along a two-dimensional equilibrium surface.
作者: spinal-stenosis    時(shí)間: 2025-3-23 21:46
Puncture of gynecological masses,sverse to a plane of equilibria. It turns out that instead we can study a one-parameter family of lines in a system depending on one parameter. Indeed, the rescaled normal form?(11.6) is the same in both cases.
作者: 淘氣    時(shí)間: 2025-3-24 02:11

作者: 珊瑚    時(shí)間: 2025-3-24 03:03
Novel Drugs in the Treatment of HypertensionThis chapter introduces the setting in which we shall study bifurcations without parameters. We compare it with classical bifurcation theory and give an overview and classification of the results presented in the following chapters.
作者: 除草劑    時(shí)間: 2025-3-24 07:08
Pheochromocytoma/ParagangliomasCosymmetries have been introduced by Yudovich and Kurakin to study limit cycles near manifolds of equilibria via Lyapunov-Schmidt reduction [49, 50]. They turn out to be equivalent to the existence of manifolds of equilibria, provided some non-degeneracy conditions are satisfied.
作者: Dictation    時(shí)間: 2025-3-24 12:11
https://doi.org/10.1007/978-1-84800-395-8In this chapter we study the simplest bifurcation without parameters: a line of equilibria which loses normal stability when a simple eigenvalue crosses zero transversely. This case has already been studied in [52], see also [28].
作者: 合并    時(shí)間: 2025-3-24 17:42
Percutaneous Mechanical Assist Devices,Without parameters, no periodic orbits bifurcate. Depending on the drift condition, two cases appear. Both are discussed in this chapter.
作者: Crohns-disease    時(shí)間: 2025-3-24 19:08
Maxwell Sehested,Niels Juul,Bo HainauIn this chapter we study the Poincaré-Andronov-Hopf bifurcation without parameters, see Chap.?., with an additional degeneracy of the drift or transversality due to an additional parameter or an additional dimension of the primary manifold of equilibria.
作者: 沒(méi)有貧窮    時(shí)間: 2025-3-24 23:11

作者: ineluctable    時(shí)間: 2025-3-25 04:18
IntroductionThis chapter introduces the setting in which we shall study bifurcations without parameters. We compare it with classical bifurcation theory and give an overview and classification of the results presented in the following chapters.
作者: 喚醒    時(shí)間: 2025-3-25 11:16
CosymmetriesCosymmetries have been introduced by Yudovich and Kurakin to study limit cycles near manifolds of equilibria via Lyapunov-Schmidt reduction [49, 50]. They turn out to be equivalent to the existence of manifolds of equilibria, provided some non-degeneracy conditions are satisfied.
作者: faultfinder    時(shí)間: 2025-3-25 14:14

作者: 易受騙    時(shí)間: 2025-3-25 17:38
Poincaré-Andronov-Hopf BifurcationWithout parameters, no periodic orbits bifurcate. Depending on the drift condition, two cases appear. Both are discussed in this chapter.
作者: COLON    時(shí)間: 2025-3-25 21:58

作者: Lamina    時(shí)間: 2025-3-26 03:41

作者: exigent    時(shí)間: 2025-3-26 07:05

作者: 圓桶    時(shí)間: 2025-3-26 08:41

作者: 懸掛    時(shí)間: 2025-3-26 16:20
https://doi.org/10.1007/978-3-319-10777-634C23,34C20,34C37,37G99,35B32; Bifurcation without parameters; Equilibria; Manifolds; Nonlinear dynamica
作者: Nebulizer    時(shí)間: 2025-3-26 20:18

作者: 職業(yè)拳擊手    時(shí)間: 2025-3-26 23:06

作者: Bernstein-test    時(shí)間: 2025-3-27 01:56
Endovascular Venous Interventionsn ever growing interest in recent years [57]. The main focus is usually the synchronization of the cells of the network. Here, we study the converse phenomenon: under suitable symmetry assumptions, networks can decouple and continua of states emerge where all couplings cancel out each other and seve
作者: 上流社會(huì)    時(shí)間: 2025-3-27 06:16

作者: tackle    時(shí)間: 2025-3-27 10:01
Alec A. Macaulay MD,Jeremy T. Smith MD. At isolated points, one of the non-degeneracy conditions?(4.8,?4.9) may fail and codimension-two singularities appear. We shall discuss these degeneracies, first in a one-parameter-family of lines of equilibria and then along a two-dimensional equilibrium surface.
作者: 存心    時(shí)間: 2025-3-27 13:47
Puncture of gynecological masses,sverse to a plane of equilibria. It turns out that instead we can study a one-parameter family of lines in a system depending on one parameter. Indeed, the rescaled normal form?(11.6) is the same in both cases.
作者: 含沙射影    時(shí)間: 2025-3-27 21:31

作者: 直覺(jué)好    時(shí)間: 2025-3-28 01:04
Role of MRI in Prostate Cancer Assessment,—to the matter content. Bianchi models, in particular, are homogeneous but anisotropic solutions. They are given by a five-dimensional ODE system in expansion-reduced variables and feature the Kasner circle . of equilibria and caps filled with heteroclinic orbits connecting equilibria on .. On the K
作者: chance    時(shí)間: 2025-3-28 05:32
Radiation Therapy: Brachytherapyreduction has been used to find time-independent bounded solutions at the onset of instability of the system when the Reynolds number increases. We regard bounded solutions as evolutions in the unbounded direction of a cross-sectional profile, and find a six-dimensional center manifold. Three conser
作者: Agnosia    時(shí)間: 2025-3-28 09:34
Image Fusion Principles: Theorytion also in Chaps. 5, 9, we removed the manifold of equilibria by multiplying with a singular factor 1∕. or 1∕.. This idea required that there is only one transverse direction to the manifold of equilibria. For such manifolds of codimension one, in phase space, we can generalize the idea.
作者: 萬(wàn)神殿    時(shí)間: 2025-3-28 12:42
Degenerate Transcritical Bifurcation. At isolated points, one of the non-degeneracy conditions?(4.8,?4.9) may fail and codimension-two singularities appear. We shall discuss these degeneracies, first in a one-parameter-family of lines of equilibria and then along a two-dimensional equilibrium surface.
作者: Mammal    時(shí)間: 2025-3-28 18:07

作者: 大雨    時(shí)間: 2025-3-28 19:49
Codimension-One Manifolds of Equilibriation also in Chaps. 5, 9, we removed the manifold of equilibria by multiplying with a singular factor 1∕. or 1∕.. This idea required that there is only one transverse direction to the manifold of equilibria. For such manifolds of codimension one, in phase space, we can generalize the idea.
作者: harpsichord    時(shí)間: 2025-3-29 02:50

作者: NICE    時(shí)間: 2025-3-29 05:47
Book 2015g manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
作者: Fibrinogen    時(shí)間: 2025-3-29 07:46

作者: 幾何學(xué)家    時(shí)間: 2025-3-29 12:01
https://doi.org/10.1007/978-3-319-66990-8 converge monotonically to some equilibrium. The balance law constructed of these two parts, however, can support profiles with oscillatory tails. They emerge from Poincaré–Andronov–Hopf bifurcations without parameters in the associated traveling-wave system.
作者: LAPSE    時(shí)間: 2025-3-29 17:24
Application: Oscillatory Profiles in Systems of Hyperbolic Balance Laws converge monotonically to some equilibrium. The balance law constructed of these two parts, however, can support profiles with oscillatory tails. They emerge from Poincaré–Andronov–Hopf bifurcations without parameters in the associated traveling-wave system.
作者: 過(guò)于光澤    時(shí)間: 2025-3-29 23:37

作者: patella    時(shí)間: 2025-3-30 02:16
0075-8434 theory is complemented by many applicationsTargeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts ar
作者: 無(wú)畏    時(shí)間: 2025-3-30 07:16

作者: 是突襲    時(shí)間: 2025-3-30 09:11
Endovascular Venous Interventionshenomenon: under suitable symmetry assumptions, networks can decouple and continua of states emerge where all couplings cancel out each other and several pairs of cells can have arbitrary phase differences.
作者: 拱形面包    時(shí)間: 2025-3-30 13:34
Preparing for Ultrasound-Guided Biopsy,ibria, drifts at both Hopf-lines can be opposite and spiraling orbits appear, see Sect. 12.1. In the generic case with a plane of equilibria without parameters, both drifts are transverse and generate a Lyapunov function. Only heteroclinic orbits arise. See Sect. 12.2.
作者: 小木槌    時(shí)間: 2025-3-30 20:00

作者: 縮影    時(shí)間: 2025-3-31 00:24

作者: Isolate    時(shí)間: 2025-3-31 01:44

作者: 流浪    時(shí)間: 2025-3-31 05:25

作者: 不確定    時(shí)間: 2025-3-31 11:57





歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
修文县| 万年县| 霍山县| 长白| 鄯善县| 利津县| 朝阳市| 新宾| 佛山市| 明光市| 时尚| 濮阳市| 塔城市| 贵州省| 万盛区| 山阴县| 广东省| 盈江县| 长春市| 江油市| 临夏市| 宁阳县| 贵州省| 壤塘县| 中西区| 勃利县| 南岸区| 博罗县| 县级市| 诸城市| 同仁县| 南开区| 德清县| 长葛市| 宜都市| 南丹县| 兴业县| 都江堰市| 子洲县| 贺兰县| 临猗县|