派博傳思國(guó)際中心

標(biāo)題: Titlebook: Artificial Intelligence for Scientific Discoveries; Extracting Physical Raban Iten Book 2023 The Editor(s) (if applicable) and The Author( [打印本頁]

作者: 難受    時(shí)間: 2025-3-21 16:39
書目名稱Artificial Intelligence for Scientific Discoveries影響因子(影響力)




書目名稱Artificial Intelligence for Scientific Discoveries影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence for Scientific Discoveries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries被引頻次




書目名稱Artificial Intelligence for Scientific Discoveries被引頻次學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries年度引用




書目名稱Artificial Intelligence for Scientific Discoveries年度引用學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries讀者反饋




書目名稱Artificial Intelligence for Scientific Discoveries讀者反饋學(xué)科排名





作者: 肌肉    時(shí)間: 2025-3-21 20:29

作者: caldron    時(shí)間: 2025-3-22 02:51
Creating Experimental Setupse the behavior of such systems is often unintuitive. In this chapter, we discuss how a special kind of reinforcement learning, called projective simulation, can help to automate the creation of experimental setups.
作者: Favorable    時(shí)間: 2025-3-22 06:19

作者: 梯田    時(shí)間: 2025-3-22 12:01
Model Testingsting a model and discovering its limitations is crucial for improving future models and guiding research. However, when there is no alternative model available, how can we determine a model’s limitations from test data alone? This chapter proposes a solution using machine learning to construct a mo
作者: inclusive    時(shí)間: 2025-3-22 15:30

作者: 咆哮    時(shí)間: 2025-3-22 19:01
Future Research Directions and?Further Readingion of searching for strategies to collect relevant observation data. The second discusses possible directions to tackle the challenge of interpreting representations extracted from experimental data in the case where we do not have a hypothesized representation.
作者: 尖酸一點(diǎn)    時(shí)間: 2025-3-22 23:32

作者: META    時(shí)間: 2025-3-23 02:01

作者: entrance    時(shí)間: 2025-3-23 06:58

作者: CAMEO    時(shí)間: 2025-3-23 09:43

作者: Osteoporosis    時(shí)間: 2025-3-23 16:22
Book 2023ering physical concepts with machine learning and elucidates their strengths and limitations. The?automation?of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the?automation?of an important step of the model creation, namely
作者: INCH    時(shí)間: 2025-3-23 20:49

作者: 揉雜    時(shí)間: 2025-3-24 01:01
Artificial Intelligence for Scientific DiscoveriesExtracting Physical
作者: 樹膠    時(shí)間: 2025-3-24 03:38
Artificial Intelligence for Scientific Discoveries978-3-031-27019-2
作者: BOAST    時(shí)間: 2025-3-24 06:44

作者: 極大的痛苦    時(shí)間: 2025-3-24 14:25

作者: 輪流    時(shí)間: 2025-3-24 16:33
978-3-031-27021-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: molest    時(shí)間: 2025-3-24 21:55
https://doi.org/10.1007/978-3-030-67877-7ual information from it. The chapter stresses the significance of comprehending how AI makes its predictions to gain insights into fundamental problems in modern physics. Furthermore, the chapter provides motivation for the following chapters and offers an overview of what to expect from the book.
作者: packet    時(shí)間: 2025-3-25 00:14
Fallacies in Medicine and Healthch networks and why they often generalize well to data not seen during the training. Therefore, we focus on a basic understanding of what neural networks are and how the training method works in principle.
作者: OATH    時(shí)間: 2025-3-25 04:26
Trübe Hornhaut nach Pterygium-Operatione the behavior of such systems is often unintuitive. In this chapter, we discuss how a special kind of reinforcement learning, called projective simulation, can help to automate the creation of experimental setups.
作者: chronology    時(shí)間: 2025-3-25 07:49
Trübe Hornhaut nach Pterygium-Operationion of new models based on assumed knowledge of relevant parameters, in contrast to much of the existing literature that concentrates on optimizing parameters for given models. Automating the search for the relevant parameters is separately discussed in part III of this book.
作者: 雕鏤    時(shí)間: 2025-3-25 14:01
https://doi.org/10.1007/978-3-642-42219-5sting a model and discovering its limitations is crucial for improving future models and guiding research. However, when there is no alternative model available, how can we determine a model’s limitations from test data alone? This chapter proposes a solution using machine learning to construct a mo
作者: exhibit    時(shí)間: 2025-3-25 16:21

作者: 凝乳    時(shí)間: 2025-3-25 20:54
Bewusstlose Frau im Badezimmer,ion of searching for strategies to collect relevant observation data. The second discusses possible directions to tackle the challenge of interpreting representations extracted from experimental data in the case where we do not have a hypothesized representation.
作者: Seizure    時(shí)間: 2025-3-26 02:03

作者: Merited    時(shí)間: 2025-3-26 05:49
Introduction,ual information from it. The chapter stresses the significance of comprehending how AI makes its predictions to gain insights into fundamental problems in modern physics. Furthermore, the chapter provides motivation for the following chapters and offers an overview of what to expect from the book.
作者: 揭穿真相    時(shí)間: 2025-3-26 11:02

作者: pus840    時(shí)間: 2025-3-26 14:10

作者: 夾克怕包裹    時(shí)間: 2025-3-26 20:22
Model Creationion of new models based on assumed knowledge of relevant parameters, in contrast to much of the existing literature that concentrates on optimizing parameters for given models. Automating the search for the relevant parameters is separately discussed in part III of this book.
作者: 成績(jī)上升    時(shí)間: 2025-3-26 23:01
Applications: Physical Toy Examplessults demonstrate that the found representations can aid in recovering concepts in physics, including those in both quantum- and classical-mechanical settings. For instance, the chapter showcases the use of these representations to recover Copernicus’ insight from the 16th century that the solar system is heliocentric.
作者: 冒失    時(shí)間: 2025-3-27 05:08
Future Research Directions and?Further Readingion of searching for strategies to collect relevant observation data. The second discusses possible directions to tackle the challenge of interpreting representations extracted from experimental data in the case where we do not have a hypothesized representation.
作者: multiply    時(shí)間: 2025-3-27 06:00
Future Prospects the physicist’s discovery process. We highlight the importance of learning procedures, rather than simple functions, for achieving this goal. Lastly, we explore how AI may help solve fundamental problems in physics in the future.
作者: assail    時(shí)間: 2025-3-27 12:23

作者: 遺產(chǎn)    時(shí)間: 2025-3-27 15:47

作者: AVANT    時(shí)間: 2025-3-27 19:02

作者: Phonophobia    時(shí)間: 2025-3-28 00:27

作者: ARY    時(shí)間: 2025-3-28 03:41
Schwerer Verkehrsunfall im Nebel,sults demonstrate that the found representations can aid in recovering concepts in physics, including those in both quantum- and classical-mechanical settings. For instance, the chapter showcases the use of these representations to recover Copernicus’ insight from the 16th century that the solar system is heliocentric.
作者: 嘴唇可修剪    時(shí)間: 2025-3-28 06:17

作者: 有偏見    時(shí)間: 2025-3-28 10:32

作者: ANTH    時(shí)間: 2025-3-28 17:05

作者: 摘要    時(shí)間: 2025-3-28 20:55
http://image.papertrans.cn/b/image/162390.jpg
作者: Aggregate    時(shí)間: 2025-3-29 01:36

作者: cancer    時(shí)間: 2025-3-29 04:06
Fallacies in Medicine and HealthAutoencoders are a tool for representation learning, which is a subfield of unsupervised machine learning and deals with feature detection in raw data. They play a crucial role in Part III of this book where we describe how to extract meaningful representation for physical systems from experimental data.
作者: Rinne-Test    時(shí)間: 2025-3-29 08:18
,Verletzungen durch schweres Ger?t,The process of physical model creation is formalised. Physical models rely on compact representations of physical systems using properties such as the mass or energy of a system. In this chapter, we introduce operational criteria for “natural” representations and formalize them mathematically.
作者: Hiatal-Hernia    時(shí)間: 2025-3-29 12:31
Verkehrsunfall im Baustellenbereich,In the previous chapter, we have formalized what we consider to be a “simple” representation of physical data. In this chapter, we discuss machine learning methods to extract such representations from experimental data.
作者: Enervate    時(shí)間: 2025-3-29 16:40
Machine Learning in?a?NutshellMachine learning (ML) has started to gain traction over the past years and found a lot of applications in science and industry. The main idea is to create algorithms that can learn from data themselves. Traditionally, we can divide ML into ., . and . learning. The focus of this chapter is to clarify the meaning of these three terms.
作者: BLANK    時(shí)間: 2025-3-29 20:48

作者: 反對(duì)    時(shí)間: 2025-3-30 01:30
Theory: Formalizing the?Process of?Human Model BuildingThe process of physical model creation is formalised. Physical models rely on compact representations of physical systems using properties such as the mass or energy of a system. In this chapter, we introduce operational criteria for “natural” representations and formalize them mathematically.
作者: 關(guān)心    時(shí)間: 2025-3-30 05:04
Methods: Using Neural Networks to?Find Simple RepresentationsIn the previous chapter, we have formalized what we consider to be a “simple” representation of physical data. In this chapter, we discuss machine learning methods to extract such representations from experimental data.
作者: 1分開    時(shí)間: 2025-3-30 12:16
Peter Flewittnachdem sie durch mehr als ein Jahrhundert im wesentlichen einem blo?en Symbolwerte gewichen war, auf solche Ergebnisse hinführte. Freilich mu? man sich vorher darüber einigen, was unter ?Deutscher Klassik? zu verstehen ist. Der Weg dazu führt über die . ?klassisch?, ?Klassik?, ?Klassiker?, ?Klassiz
作者: lobster    時(shí)間: 2025-3-30 12:26

作者: anatomical    時(shí)間: 2025-3-30 16:38
Recent Advances in Stem Cell Neurobiology Was aber sind Texte? Ist ein Kassenzettel ein Text? Ein Telefonbucheintrag? Eine Tabelle mit Daten? Und was haben diese Texte mit einem Gedicht, einem wissenschaftlichen Handbuchartikel, einem Roman oder einem Brief gemeinsam? Es gibt Texte in den unterschiedlichsten Formen und Variationen mit den
作者: 內(nèi)閣    時(shí)間: 2025-3-30 22:16

作者: DOSE    時(shí)間: 2025-3-31 03:55





歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
昌都县| 那坡县| 德昌县| 馆陶县| 绍兴市| 繁昌县| 沙田区| 漳浦县| 吉水县| 阿拉尔市| 炉霍县| 常熟市| 中阳县| 天全县| 虎林市| 师宗县| 巴彦淖尔市| 石泉县| 牙克石市| 周至县| 静安区| 盐津县| 芒康县| 兴义市| 白银市| 牙克石市| 太谷县| 黎川县| 重庆市| 邢台县| 宣武区| 正镶白旗| 镇平县| 乐陵市| 阳新县| 郁南县| 南澳县| 胶州市| 万载县| 寻乌县| 蓬安县|