標(biāo)題: Titlebook: Arithmetic Geometry over Global Function Fields; Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Textbook 2014 Springer Basel 2014 Drin [打印本頁] 作者: 街道 時(shí)間: 2025-3-21 18:03
書目名稱Arithmetic Geometry over Global Function Fields影響因子(影響力)
書目名稱Arithmetic Geometry over Global Function Fields影響因子(影響力)學(xué)科排名
書目名稱Arithmetic Geometry over Global Function Fields網(wǎng)絡(luò)公開度
書目名稱Arithmetic Geometry over Global Function Fields網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Arithmetic Geometry over Global Function Fields被引頻次
書目名稱Arithmetic Geometry over Global Function Fields被引頻次學(xué)科排名
書目名稱Arithmetic Geometry over Global Function Fields年度引用
書目名稱Arithmetic Geometry over Global Function Fields年度引用學(xué)科排名
書目名稱Arithmetic Geometry over Global Function Fields讀者反饋
書目名稱Arithmetic Geometry over Global Function Fields讀者反饋學(xué)科排名
作者: reptile 時(shí)間: 2025-3-21 22:20
Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields,ts and discussed some open problems regarding the gamma and zeta functions in the function field context. The first four lectures of these notes, dealing with gamma, roughly correspond to the first four lectures of one and half hour each, and the last three lectures, dealing with zeta, cover the las作者: Ganglion-Cyst 時(shí)間: 2025-3-22 02:02 作者: 修飾 時(shí)間: 2025-3-22 06:10 作者: 顯赫的人 時(shí)間: 2025-3-22 09:10 作者: Mitigate 時(shí)間: 2025-3-22 15:16 作者: 古文字學(xué) 時(shí)間: 2025-3-22 20:56 作者: Obituary 時(shí)間: 2025-3-22 23:05
2297-0304 its geometric analogues, and the construction of Mordell–WeThis volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the 作者: HAUNT 時(shí)間: 2025-3-23 05:25 作者: gimmick 時(shí)間: 2025-3-23 06:37
Arithmetic Geometry over Global Function Fields978-3-0348-0853-8Series ISSN 2297-0304 Series E-ISSN 2297-0312 作者: sclera 時(shí)間: 2025-3-23 11:05
Expert Apache Cassandra Administrationin results on curves and their Jacobians over function fields, with emphasis on the group of rational points of the Jacobian, and to explain various constructions of Jacobians with large Mordell–Weil rank.作者: 職業(yè) 時(shí)間: 2025-3-23 14:24
https://doi.org/10.1007/978-3-0348-0853-8Drinfeld modules; Gamma functions; L-functions; Zeta and Multizeta functions; cohomology theory; t-motive作者: 爭吵 時(shí)間: 2025-3-23 21:52
Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Includes a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell–We作者: 嚙齒動物 時(shí)間: 2025-3-24 01:09 作者: 蛙鳴聲 時(shí)間: 2025-3-24 06:18
https://doi.org/10.1007/978-1-4302-4951-1This lecture series introduces in the first part a cohomological theory for varieties in positive characteristic with finitely generated rings of this characteristic as coefficients developed jointly with Richard Pink. In the second part various applications are given.作者: 揮舞 時(shí)間: 2025-3-24 07:01 作者: 西瓜 時(shí)間: 2025-3-24 14:14 作者: Ovulation 時(shí)間: 2025-3-24 18:38
On Geometric Iwasawa Theory and Special Values of Zeta Functions,Having succumbed to the requests of the organisers of the Research Programme on Function Field Arithmetic that was held in 2010 at the CRM in Barcelona, we present here a survey of some recent results concerning certain aspects of the Iwasawa theory of varieties over finite fields.作者: 神刊 時(shí)間: 2025-3-24 21:18 作者: tympanometry 時(shí)間: 2025-3-24 23:56 作者: BALE 時(shí)間: 2025-3-25 05:47
Expert Apache Cassandra Administrationin results on curves and their Jacobians over function fields, with emphasis on the group of rational points of the Jacobian, and to explain various constructions of Jacobians with large Mordell–Weil rank.作者: LURE 時(shí)間: 2025-3-25 11:15
Curves and Jacobians over Function Fields,in results on curves and their Jacobians over function fields, with emphasis on the group of rational points of the Jacobian, and to explain various constructions of Jacobians with large Mordell–Weil rank.作者: Vsd168 時(shí)間: 2025-3-25 15:17 作者: callous 時(shí)間: 2025-3-25 18:49
Textbook 2014acobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, 作者: 踉蹌 時(shí)間: 2025-3-25 22:45
7樓作者: 微粒 時(shí)間: 2025-3-26 00:25
8樓作者: Host142 時(shí)間: 2025-3-26 04:44
8樓作者: HEAVY 時(shí)間: 2025-3-26 09:23
8樓作者: bifurcate 時(shí)間: 2025-3-26 13:07
9樓作者: 一美元 時(shí)間: 2025-3-26 18:04
9樓作者: NATAL 時(shí)間: 2025-3-27 00:46
9樓作者: 鞭打 時(shí)間: 2025-3-27 03:07
9樓作者: 防止 時(shí)間: 2025-3-27 07:54
10樓作者: 相容 時(shí)間: 2025-3-27 12:33
10樓作者: ALIAS 時(shí)間: 2025-3-27 13:46
10樓作者: Congestion 時(shí)間: 2025-3-27 21:23
10樓