派博傳思國際中心

標題: Titlebook: Approximation of Euclidean Metric by Digital Distances; Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer [打印本頁]

作者: mountebank    時間: 2025-3-21 18:47
書目名稱Approximation of Euclidean Metric by Digital Distances影響因子(影響力)




書目名稱Approximation of Euclidean Metric by Digital Distances影響因子(影響力)學科排名




書目名稱Approximation of Euclidean Metric by Digital Distances網(wǎng)絡公開度




書目名稱Approximation of Euclidean Metric by Digital Distances網(wǎng)絡公開度學科排名




書目名稱Approximation of Euclidean Metric by Digital Distances被引頻次




書目名稱Approximation of Euclidean Metric by Digital Distances被引頻次學科排名




書目名稱Approximation of Euclidean Metric by Digital Distances年度引用




書目名稱Approximation of Euclidean Metric by Digital Distances年度引用學科排名




書目名稱Approximation of Euclidean Metric by Digital Distances讀者反饋




書目名稱Approximation of Euclidean Metric by Digital Distances讀者反饋學科排名





作者: Permanent    時間: 2025-3-21 22:03

作者: cauda-equina    時間: 2025-3-22 01:52
Linear Combination of Digital Distances,derestimated and overestimated norms. In particular, it presents an analysis on approximation of Euclidean metrics by a linear combination of weighted .-cost and chamfering weighted distance functions. The same theory is applied to get new results and insights in the approximation of Euclidean metri
作者: 過度    時間: 2025-3-22 06:22
Book 2020. It discusses the properties of these distance functions and presents various kinds of error analysis in approximating Euclidean metrics. It also presents a historical perspective on efforts and motivation for approximating Euclidean metrics by digital distances from the mid-sixties of the previous
作者: 參考書目    時間: 2025-3-22 11:25

作者: 五行打油詩    時間: 2025-3-22 15:09
y of digital distances.Summarizes properties of different cl.This book discusses different types of distance functions defined in an n-D integral space for their usefulness in approximating the Euclidean metric. It discusses the properties of these distance functions and presents various kinds of er
作者: Ophthalmologist    時間: 2025-3-22 20:48

作者: ethnology    時間: 2025-3-22 22:36

作者: 工作    時間: 2025-3-23 01:35

作者: Jargon    時間: 2025-3-23 05:35
Linear Combination of Digital Distances, .-cost and chamfering weighted distance functions. The same theory is applied to get new results and insights in the approximation of Euclidean metrics by other sub-classes such as m-neighbor, t-cost, weighted t-cost, and hyperoctagonal distances.
作者: Jingoism    時間: 2025-3-23 10:39
cs by digital distances from the mid-sixties of the previous century. The book also contains an in-depth presentation of recent progress, and new research problems in this area.?.978-981-15-9900-2978-981-15-9901-9
作者: infantile    時間: 2025-3-23 17:27

作者: 嘲弄    時間: 2025-3-23 21:00

作者: Organization    時間: 2025-3-23 22:52

作者: gonioscopy    時間: 2025-3-24 06:04

作者: Chromatic    時間: 2025-3-24 08:53
Error Analysis: Analytical Approaches,The chapter discusses analytical approaches for analysis of errors of approximating Euclidean metrics by digital metrics. Toward this, various analytical error measures have been defined and their upper-bounds in integral and real spaces are discussed. It also considers the empirical analysis of approximation errors.
作者: entice    時間: 2025-3-24 14:00
Conclusion,The chapter concludes the discussion of error analysis in this book by presenting a comparative study on performances of various representative distances in approximating Euclidean metrics.
作者: disrupt    時間: 2025-3-24 16:49

作者: Postulate    時間: 2025-3-24 20:42
P. Frick,G.-A. Harnack,A. Praderf distance functions, and many of the results derived for them are shown as special cases of the properties of the general class of distance function. It includes discussion on m-neighbor distances, t-cost distances, generalized octagonal distances, chamfering weighted distances, weighted t-cost dis
作者: CHAR    時間: 2025-3-24 23:36
https://doi.org/10.1007/978-3-642-69841-5are discussed. It defines different types of geometric errors using those properties for evaluating the proximity of distance functions to Euclidean metrics. Finally, it presents a hybrid approach of computing analytical error from geometric measurements on hyperspheres.
作者: QUAIL    時間: 2025-3-25 06:26

作者: heckle    時間: 2025-3-25 09:19
Error Analysis: Geometric Approaches,are discussed. It defines different types of geometric errors using those properties for evaluating the proximity of distance functions to Euclidean metrics. Finally, it presents a hybrid approach of computing analytical error from geometric measurements on hyperspheres.
作者: 都相信我的話    時間: 2025-3-25 13:30
Jayanta MukhopadhyayCovers the topic of digital distances and their Euclidean approximation comprehensively.Includes recent results and advancement in the theory of digital distances.Summarizes properties of different cl
作者: 極微小    時間: 2025-3-25 17:19

作者: Suppository    時間: 2025-3-25 23:02

作者: scotoma    時間: 2025-3-26 02:12

作者: dysphagia    時間: 2025-3-26 04:34
Approximation of Euclidean Metric by Digital Distances
作者: 在前面    時間: 2025-3-26 10:32
Approximation of Euclidean Metric by Digital Distances978-981-15-9901-9
作者: Microaneurysm    時間: 2025-3-26 14:57

作者: Override    時間: 2025-3-26 19:30

作者: confederacy    時間: 2025-3-27 00:27
,Bemessung von Druckstollenauskleidungen unter Berücksichtigung des Einflusses der Gebirgsverankerun festgestellt, da? die Anker st?rker auszubilden sind, als dies einer Dimensionierung auf reinen Gebirgsdruck entsprechen würde, und da? nicht die L?nge der Anker, sondern deren Tragf?higkeit entscheidend ist.
作者: 剝皮    時間: 2025-3-27 02:05

作者: 煩人    時間: 2025-3-27 07:01

作者: FEAT    時間: 2025-3-27 09:30

作者: 百科全書    時間: 2025-3-27 15:53

作者: 脫落    時間: 2025-3-27 18:27

作者: 抑制    時間: 2025-3-27 23:51
Conference proceedings 2005p- vious conferences in the series: ICCS 2004 in Krakow, Poland; ICCS 2003 held simultaneously at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, California, USA. Computational science is rapidly maturing as




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
康马县| 遵义市| 宝坻区| 特克斯县| 钟山县| 夹江县| 昌吉市| 岫岩| 荆州市| 施秉县| 丽水市| 内乡县| 通化县| 宝坻区| 瑞昌市| 乐平市| 利辛县| 建水县| 阜南县| 科尔| 东城区| 晋中市| 横山县| 缙云县| 富顺县| 塔河县| 甘谷县| 星子县| 利川市| 务川| 安岳县| 临澧县| 富民县| 儋州市| 水城县| 个旧市| 汶川县| 永善县| 巩义市| 东莞市| 拜城县|