派博傳思國(guó)際中心

標(biāo)題: Titlebook: Approaching the Kannan-Lovász-Simonovits and Variance Conjectures; David Alonso-Gutiérrez,Jesús Bastero Book 2015 Springer International P [打印本頁(yè)]

作者: 螺絲刀    時(shí)間: 2025-3-21 18:32
書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures影響因子(影響力)




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures影響因子(影響力)學(xué)科排名




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures被引頻次




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures被引頻次學(xué)科排名




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures年度引用




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures年度引用學(xué)科排名




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures讀者反饋




書(shū)目名稱Approaching the Kannan-Lovász-Simonovits and Variance Conjectures讀者反饋學(xué)科排名





作者: 不舒服    時(shí)間: 2025-3-21 23:45

作者: Pastry    時(shí)間: 2025-3-22 04:09
0075-8434 respectively, to the hyperplane conjecture. Next, the main ideas needed prove the best known estimate for the thin-shell width given by Guédon-Milman and an approach to Eldan‘s work on the connection between the thin-shell width and the KLS conjecture are detailed..978-3-319-13262-4978-3-319-13263-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: incisive    時(shí)間: 2025-3-22 05:32

作者: auxiliary    時(shí)間: 2025-3-22 12:02
Karrierestart und ZukunftssicherungIn this second chapter the main examples known to satisfy the KLS conjecture, the square negative correlation property or the variance conjecture are provided. We also show Klartag’s results on unconditional convex bodies, which show that, up to a logarithmic factor, they verify the KLS conjecture and they verify the variance conjecture.
作者: 幻影    時(shí)間: 2025-3-22 16:35

作者: 啞劇    時(shí)間: 2025-3-22 20:00

作者: 一起平行    時(shí)間: 2025-3-22 23:13
Lecture Notes in Mathematicshttp://image.papertrans.cn/b/image/160344.jpg
作者: Indurate    時(shí)間: 2025-3-23 04:42
https://doi.org/10.1007/978-3-8349-6538-7iginally posed in relation with some problems in theoretical computer science, and the variance conjecture, which appeared independently in relation with the central limit problem for isotropic convex bodies and is a particular case of the KLS conjecture. The relation of the KLS conjecture with Chee
作者: Obsessed    時(shí)間: 2025-3-23 09:00
Karrierestart und Zukunftssicherungblem will be sketched. Besides, the reader can find in this chapter a sketch of the proof of the best general estimate of the thin-shell width known up to now, due to Guédon and Milman, and how the variance conjecture, despite of being weaker than the KLS conjecture, implies the latter up to a logar
作者: murmur    時(shí)間: 2025-3-23 11:58
https://doi.org/10.1007/978-3-319-13263-146Bxx,52Axx,60-XX,28Axx; ; Convex bodies; Isoperimetric inequalities; Poincaré‘s inequalities for log-co
作者: 鞠躬    時(shí)間: 2025-3-23 15:45

作者: 成績(jī)上升    時(shí)間: 2025-3-23 19:16

作者: 暫時(shí)休息    時(shí)間: 2025-3-24 00:41
Karrierestart und Zukunftssicherungblem will be sketched. Besides, the reader can find in this chapter a sketch of the proof of the best general estimate of the thin-shell width known up to now, due to Guédon and Milman, and how the variance conjecture, despite of being weaker than the KLS conjecture, implies the latter up to a logarithmic factor, as Eldan proved.
作者: 母豬    時(shí)間: 2025-3-24 04:02
The Conjectures,iginally posed in relation with some problems in theoretical computer science, and the variance conjecture, which appeared independently in relation with the central limit problem for isotropic convex bodies and is a particular case of the KLS conjecture. The relation of the KLS conjecture with Chee
作者: 臨時(shí)抱佛腳    時(shí)間: 2025-3-24 07:32
Relating the Conjectures,blem will be sketched. Besides, the reader can find in this chapter a sketch of the proof of the best general estimate of the thin-shell width known up to now, due to Guédon and Milman, and how the variance conjecture, despite of being weaker than the KLS conjecture, implies the latter up to a logar
作者: 小樣他閑聊    時(shí)間: 2025-3-24 13:36
Book 2015e, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the treated topics. Offering a presentation suitable for professionals with little background in analysis, geometry or probability, the
作者: 使迷醉    時(shí)間: 2025-3-24 15:30

作者: 蕨類    時(shí)間: 2025-3-24 21:20
https://doi.org/10.1007/978-3-8349-6538-7will be explained. Regarding the variance conjecture, it will be explained how this conjecture is equivalent to the thin-shell width conjecture and how it is implied by a strong property in some log-concave measures: The square negative correlation property.
作者: 外露    時(shí)間: 2025-3-24 23:32
The Conjectures,will be explained. Regarding the variance conjecture, it will be explained how this conjecture is equivalent to the thin-shell width conjecture and how it is implied by a strong property in some log-concave measures: The square negative correlation property.
作者: 獨(dú)輪車    時(shí)間: 2025-3-25 06:03
6樓
作者: Alienated    時(shí)間: 2025-3-25 09:16
7樓
作者: Locale    時(shí)間: 2025-3-25 14:04
7樓
作者: 顯赫的人    時(shí)間: 2025-3-25 17:13
7樓
作者: Ambulatory    時(shí)間: 2025-3-25 20:41
7樓
作者: CUMB    時(shí)間: 2025-3-26 01:00
8樓
作者: Harpoon    時(shí)間: 2025-3-26 04:27
8樓
作者: Verify    時(shí)間: 2025-3-26 10:09
8樓
作者: Infiltrate    時(shí)間: 2025-3-26 14:40
9樓
作者: CON    時(shí)間: 2025-3-26 16:57
9樓
作者: Clinch    時(shí)間: 2025-3-26 22:47
9樓
作者: Affirm    時(shí)間: 2025-3-27 01:46
9樓
作者: 蒼白    時(shí)間: 2025-3-27 09:09
10樓
作者: 強(qiáng)有力    時(shí)間: 2025-3-27 12:27
10樓
作者: Aura231    時(shí)間: 2025-3-27 14:42
10樓
作者: 殖民地    時(shí)間: 2025-3-27 21:12
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
山丹县| 鹤庆县| 永新县| 鸡东县| 东乡县| 平谷区| 永平县| 浙江省| 西乡县| 丹寨县| 渝北区| 镇江市| 息烽县| 江山市| 田林县| 万年县| 潞西市| 阳城县| 文化| 闸北区| 德阳市| 玛沁县| 大安市| 武平县| 桦南县| 西平县| 花莲市| 西乌珠穆沁旗| 东阳市| 工布江达县| 永修县| 交口县| 南雄市| 醴陵市| 安塞县| 体育| 修水县| 临猗县| 台中市| 奉新县| 台东县|