派博傳思國(guó)際中心

標(biāo)題: Titlebook: Applications of q-Calculus in Operator Theory; Ali Aral,Vijay Gupta,Ravi P Agarwal Book 2013 Springer Science+Business Media New York 2013 [打印本頁(yè)]

作者: MIFF    時(shí)間: 2025-3-21 18:48
書目名稱Applications of q-Calculus in Operator Theory影響因子(影響力)




書目名稱Applications of q-Calculus in Operator Theory影響因子(影響力)學(xué)科排名




書目名稱Applications of q-Calculus in Operator Theory網(wǎng)絡(luò)公開度




書目名稱Applications of q-Calculus in Operator Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applications of q-Calculus in Operator Theory被引頻次




書目名稱Applications of q-Calculus in Operator Theory被引頻次學(xué)科排名




書目名稱Applications of q-Calculus in Operator Theory年度引用




書目名稱Applications of q-Calculus in Operator Theory年度引用學(xué)科排名




書目名稱Applications of q-Calculus in Operator Theory讀者反饋




書目名稱Applications of q-Calculus in Operator Theory讀者反饋學(xué)科排名





作者: Lament    時(shí)間: 2025-3-21 22:23
o functions in real and complex domain? forms the gist of the book. .This book is suitable for researchers and?students in mathematics,?physics and?engineering,?and for?professionals who would enjoy exploring the host of mathematical?techniques and ideas that are collected and discussed?in the?book..978-1-4899-9625-1978-1-4614-6946-9
作者: MOAT    時(shí)間: 2025-3-22 01:29
Book 2013 to application areas such?as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics.???This monograph is an introduction to combining approxi
作者: HUMP    時(shí)間: 2025-3-22 06:20

作者: Certainty    時(shí)間: 2025-3-22 08:58

作者: HAVOC    時(shí)間: 2025-3-22 15:47
,-Bernstein-Type Integral Operators,her generalizations of the Bernstein polynomials are available in the literature. The other most popular generalization as considered by Goodman and Sharma [82], namely, genuine Bernstein–Durrmeyer operators.
作者: TIA742    時(shí)間: 2025-3-22 21:05
Energy Flow Calculation of Energy Internet,ns of nonisotropic distance and their pointwise approximation properties in different normed spaces are analyzed. Furthermore, in [40, 110], Picard and Gauss Weierstrass singular integrals were considered in exponential weighted spaces for functions of one or two variables.
作者: expunge    時(shí)間: 2025-3-22 23:17

作者: Exaggerate    時(shí)間: 2025-3-23 02:37

作者: resistant    時(shí)間: 2025-3-23 07:17

作者: 懸崖    時(shí)間: 2025-3-23 10:02
https://doi.org/10.1007/978-981-13-0523-8In the recent years applications of .-calculus in the area of approximation theory and number theory are an active area of research. Several researchers have proposed the .-analogue of exponential, Kantorovich- and Durrmeyer-type operators. Also Kim [106] and [105] used .-calculus in the area of number theory.
作者: demote    時(shí)間: 2025-3-23 16:52

作者: 劇毒    時(shí)間: 2025-3-23 19:38
Statistical Convergence of ,-Operators,One of the most recently studied subject in approximation theory is the approximation of function by linear positive operators using .-statistical convergence or a matrix summability method.
作者: Medley    時(shí)間: 2025-3-23 23:07
,-Complex Operators,In the recent years applications of .-calculus in the area of approximation theory and number theory are an active area of research. Several researchers have proposed the .-analogue of exponential, Kantorovich- and Durrmeyer-type operators. Also Kim [106] and [105] used .-calculus in the area of number theory.
作者: Arthritis    時(shí)間: 2025-3-24 06:05

作者: llibretto    時(shí)間: 2025-3-24 08:02

作者: HEPA-filter    時(shí)間: 2025-3-24 14:45
,-Discrete Operators and Their Results,omials, .-Szász–Mirakyan operators, .-Baskakov operators, and .-Bleimann, Butzer, and Hahn operators. Here, we present moment estimation, convergence behavior, and shape-preserving properties of these discrete operators.
作者: 毀壞    時(shí)間: 2025-3-24 16:46
, ,-Summation–Integral Operators, introduced Durrmeyer-type modification of .-Baskakov operators. These operators, opposed to Bernstein–Durrmeyer operators, are defined to approximate a function . on .. The Durrmeyer-type modification of the .-Bernstein operators was first introduced in [48].
作者: Accrue    時(shí)間: 2025-3-24 22:56
Ali Aral,Vijay Gupta,Ravi P AgarwalThe first book on q-calculus in approximation theory.Provides a good resource for researchers and teachers.Features many applications of q calculus in the theory of approximation.Includes supplementar
作者: Fallibility    時(shí)間: 2025-3-25 02:11

作者: Obverse    時(shí)間: 2025-3-25 03:34
https://doi.org/10.1007/978-1-4614-6946-9Voronovskaya‘s theorem; generating functions; q-Bernstein polynomials; q-Durrmeyer operators; q-calculus
作者: 祖先    時(shí)間: 2025-3-25 08:56

作者: 吵鬧    時(shí)間: 2025-3-25 15:11

作者: Felicitous    時(shí)間: 2025-3-25 16:29

作者: 通知    時(shí)間: 2025-3-25 20:29
https://doi.org/10.1007/978-981-13-0523-8[58] considered a more general integral modification of the classical Bernstein polynomials, which were studied first by Derriennic [47]. Also some other generalizations of the Bernstein polynomials are available in the literature. The other most popular generalization as considered by Goodman and S
作者: sebaceous-gland    時(shí)間: 2025-3-26 00:57

作者: 卡死偷電    時(shí)間: 2025-3-26 06:43
,-Discrete Operators and Their Results,omials, .-Szász–Mirakyan operators, .-Baskakov operators, and .-Bleimann, Butzer, and Hahn operators. Here, we present moment estimation, convergence behavior, and shape-preserving properties of these discrete operators.
作者: uncertain    時(shí)間: 2025-3-26 09:36
,-Integral Operators,nastassiou and Gal [18] includes great number of results related to different properties of these type of operators and also includes other references on the subject. For example, in Chapter 16 of [18], Jackson-type generalization of these operators is one among other generalizations, which satisfy
作者: 發(fā)電機(jī)    時(shí)間: 2025-3-26 16:17

作者: 無孔    時(shí)間: 2025-3-26 18:54

作者: 群島    時(shí)間: 2025-3-26 23:00
8樓
作者: oblique    時(shí)間: 2025-3-27 02:02
8樓
作者: RAGE    時(shí)間: 2025-3-27 06:45
9樓
作者: 抑制    時(shí)間: 2025-3-27 09:40
9樓
作者: intertwine    時(shí)間: 2025-3-27 15:25
9樓
作者: THE    時(shí)間: 2025-3-27 21:04
9樓
作者: 語言學(xué)    時(shí)間: 2025-3-27 23:22
10樓
作者: fleeting    時(shí)間: 2025-3-28 05:04
10樓
作者: miscreant    時(shí)間: 2025-3-28 08:34
10樓
作者: Harpoon    時(shí)間: 2025-3-28 13:23
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
淮南市| 榕江县| 军事| 当阳市| 北碚区| 宁陵县| 台北县| 喀喇沁旗| 任丘市| 孙吴县| 正宁县| 资溪县| 深水埗区| 年辖:市辖区| 开远市| 当涂县| 张家界市| 绩溪县| 盐津县| 东港市| 南充市| 元氏县| 离岛区| 桓台县| 遵义市| 青浦区| 宣威市| 辽中县| 嘉祥县| 隆安县| 镇雄县| 哈密市| 河间市| 玉龙| 登封市| 张掖市| 台东市| 明光市| 当雄县| 霍城县| 葵青区|