派博傳思國際中心

標題: Titlebook: Applications of Artificial Intelligence in Tunnelling and Underground Space Technology; Danial Jahed Armaghani,Aydin Azizi Book 2021 The A [打印本頁]

作者: 五個    時間: 2025-3-21 19:10
書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology影響因子(影響力)




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology影響因子(影響力)學科排名




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology網(wǎng)絡(luò)公開度




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology網(wǎng)絡(luò)公開度學科排名




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology被引頻次




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology被引頻次學科排名




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology年度引用




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology年度引用學科排名




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology讀者反饋




書目名稱Applications of Artificial Intelligence in Tunnelling and Underground Space Technology讀者反饋學科排名





作者: exceed    時間: 2025-3-21 22:22
Empirical, Statistical, and Intelligent Techniques for TBM Performance Prediction,e projects, estimation of the TBM performance is?considered as a significant issue since it?can be an influential parameter related to the project?cost. Hence, many scholars tried to develop simple, applicable, and powerful methodologies for the prediction of TBM performance. The total developed met
作者: 漂浮    時間: 2025-3-22 01:03

作者: arrhythmic    時間: 2025-3-22 04:40

作者: 態(tài)學    時間: 2025-3-22 08:54
Danial Jahed Armaghani,Aydin AziziPresents statistical and intelligent computational techniques to calculate the performance of tunnel boring machine (TBM).Includes a review of available TBM performance predictive models in detail.Int
作者: Arthr-    時間: 2025-3-22 14:15
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/a/image/159303.jpg
作者: 發(fā)微光    時間: 2025-3-22 19:45

作者: –LOUS    時間: 2025-3-22 22:11

作者: 拋媚眼    時間: 2025-3-23 05:19

作者: SCORE    時間: 2025-3-23 07:27

作者: AMITY    時間: 2025-3-23 10:53
Empirische Polizeiforschung IIIe projects, estimation of the TBM performance is?considered as a significant issue since it?can be an influential parameter related to the project?cost. Hence, many scholars tried to develop simple, applicable, and powerful methodologies for the prediction of TBM performance. The total developed met
作者: IOTA    時間: 2025-3-23 14:35

作者: 輕快帶來危險    時間: 2025-3-23 19:57
Das Modell der Preisabsatzfunktiondo this, after reviewing the available literature, the data collected from the tunnel site and doing laboratory investigations, five important parameters, i.e., rock mass rating, Brazilian tensile strength, weathering zone, cutter head thrust force, and revolution per minute, were set as model input
作者: 惡意    時間: 2025-3-24 01:01

作者: 不可侵犯    時間: 2025-3-24 02:20
Book 2021ve been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, pow
作者: Dungeon    時間: 2025-3-24 08:06

作者: Bravado    時間: 2025-3-24 13:47

作者: 口訣    時間: 2025-3-24 18:23

作者: Madrigal    時間: 2025-3-24 19:02
2191-530X of available TBM performance predictive models in detail.Int.This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical r
作者: AORTA    時間: 2025-3-25 02:07
Empirische Polizeiforschung IIIir accuracy level is only suitable (coefficient of determination ~0.6) in many cases. On the other hand, these techniques are not good if there are some outlier data samples in the database. The best model category for TBM performance prediction is related to machine learning (ML) and artificial int
作者: CLASH    時間: 2025-3-25 03:36

作者: CARE    時間: 2025-3-25 09:44

作者: 征稅    時間: 2025-3-25 14:52

作者: CHOIR    時間: 2025-3-25 18:55
Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem,erformance prediction compared to simple regression models. A coefficient of determination of about 0.6 confirmed a suitable and applicable accuracy level for the developed LMR and NLMR equations in estimating TBM PR/AR.
作者: Immunization    時間: 2025-3-25 23:16

作者: 外面    時間: 2025-3-26 00:58
Applications of Artificial Intelligence in Tunnelling and Underground Space Technology
作者: 顛簸下上    時間: 2025-3-26 04:20
8樓
作者: Apraxia    時間: 2025-3-26 12:27
8樓
作者: Blood-Clot    時間: 2025-3-26 16:41
9樓
作者: 嚴厲批評    時間: 2025-3-26 19:30
9樓
作者: Munificent    時間: 2025-3-26 21:49
9樓
作者: 蠟燭    時間: 2025-3-27 02:15
9樓
作者: LARK    時間: 2025-3-27 09:18
10樓
作者: 易發(fā)怒    時間: 2025-3-27 11:57
10樓
作者: 臆斷    時間: 2025-3-27 14:51
10樓
作者: 酷熱    時間: 2025-3-27 21:39
10樓




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
东方市| 张家川| 万载县| 道孚县| 普兰县| 绵竹市| 宣城市| 康马县| 梅河口市| 江城| 鹤壁市| 读书| 收藏| 淳安县| 玛纳斯县| 乌审旗| 榆中县| 洪雅县| 额尔古纳市| 孟村| 金坛市| 简阳市| 商洛市| 新巴尔虎右旗| 遂宁市| 隆子县| 定兴县| 长白| 平和县| 宣汉县| 郴州市| 滨海县| 德惠市| 句容市| 敦煌市| 双城市| 灵寿县| 天祝| 雅安市| 兰西县| 峡江县|