派博傳思國(guó)際中心

標(biāo)題: Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkh?user Boston 2007 Grad.algebra [打印本頁(yè)]

作者: injurious    時(shí)間: 2025-3-21 16:07
書目名稱An Invitation to Quantum Cohomology影響因子(影響力)




書目名稱An Invitation to Quantum Cohomology影響因子(影響力)學(xué)科排名




書目名稱An Invitation to Quantum Cohomology網(wǎng)絡(luò)公開(kāi)度




書目名稱An Invitation to Quantum Cohomology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱An Invitation to Quantum Cohomology被引頻次




書目名稱An Invitation to Quantum Cohomology被引頻次學(xué)科排名




書目名稱An Invitation to Quantum Cohomology年度引用




書目名稱An Invitation to Quantum Cohomology年度引用學(xué)科排名




書目名稱An Invitation to Quantum Cohomology讀者反饋




書目名稱An Invitation to Quantum Cohomology讀者反饋學(xué)科排名





作者: Antecedent    時(shí)間: 2025-3-21 22:21

作者: Cholecystokinin    時(shí)間: 2025-3-22 03:06
R. Beer,G. C. Loeschcke,G. Fank,Ch. Hechte shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a careful description. The principal reference for this chapter is Knudsen [51]; see also Keel [47].
作者: Patrimony    時(shí)間: 2025-3-22 06:26
F. Hoffmeister,E. Grünvogel,W. Wirthromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..
作者: 造反,叛亂    時(shí)間: 2025-3-22 09:00

作者: ADJ    時(shí)間: 2025-3-22 13:27
Quantum Cohomology,romov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..
作者: AWE    時(shí)間: 2025-3-22 20:14
An Invitation to Quantum Cohomology978-0-8176-4495-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: 外面    時(shí)間: 2025-3-23 00:47

作者: ARK    時(shí)間: 2025-3-23 03:28
https://doi.org/10.1007/978-0-8176-4495-6Grad; algebraic geometry; cohomology; homology; moduli space
作者: 相同    時(shí)間: 2025-3-23 08:52

作者: nutrients    時(shí)間: 2025-3-23 11:52

作者: 出生    時(shí)間: 2025-3-23 17:45
R. Beer,G. C. Loeschcke,G. Fank,Ch. Hechtnherited from ., the important Deligne-Mumford-Knudsen moduli space of stable .-pointed rational curves which are the subject of this first chapter. We shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a carefu
作者: 鄙視    時(shí)間: 2025-3-23 18:26
F. Hoffmeister,E. Grünvogel,W. Wirthdefine a . on .. Kontsevich’s formula and the other recursions we found in Chapter 4, are then interpreted as partial differential equations for the Gromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Ko
作者: pacifist    時(shí)間: 2025-3-24 01:31

作者: 吸氣    時(shí)間: 2025-3-24 06:13

作者: tinnitus    時(shí)間: 2025-3-24 06:52
Progress in Mathematicshttp://image.papertrans.cn/a/image/155646.jpg
作者: 人工制品    時(shí)間: 2025-3-24 14:06

作者: 不斷的變動(dòng)    時(shí)間: 2025-3-24 18:48

作者: Ischemia    時(shí)間: 2025-3-24 19:05

作者: 良心    時(shí)間: 2025-3-25 00:44

作者: 沙漠    時(shí)間: 2025-3-25 05:26
Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space,Throughout this book we work over the field of complex numbers. When we speak of schemes we mean schemes of finite type over Spec ?.
作者: 我正派    時(shí)間: 2025-3-25 09:15

作者: MAG    時(shí)間: 2025-3-25 12:22

作者: 青少年    時(shí)間: 2025-3-25 15:52
,Gromov—Witten Invariants,The intersection numbers resulting from an ideal transverse situation as in Proposition 3.4.3. are the (genus-0) .. In Section 4.2 we establish the basic properties of Gromov-Witten invariants, and in 4.3 and 4.4 we describe recursive relations among them, allowing for their computation.
作者: 終點(diǎn)    時(shí)間: 2025-3-25 22:51

作者: Foregery    時(shí)間: 2025-3-26 04:08
Stable ,-pointed Curves,nherited from ., the important Deligne-Mumford-Knudsen moduli space of stable .-pointed rational curves which are the subject of this first chapter. We shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a carefu
作者: 官僚統(tǒng)治    時(shí)間: 2025-3-26 07:45
Quantum Cohomology,define a . on .. Kontsevich’s formula and the other recursions we found in Chapter 4, are then interpreted as partial differential equations for the Gromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Ko
作者: conjunctivitis    時(shí)間: 2025-3-26 09:46

作者: 親屬    時(shí)間: 2025-3-26 14:29

作者: Tortuous    時(shí)間: 2025-3-26 16:48
Conference proceedings 2016and Intelligent RecognitionSystems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The programcommittee received 175 submissions. Each paper was peer reviewed by at leastthree or more independent referees of the program committee and the 59 paperswere finally selected. The papers offer stimula
作者: objection    時(shí)間: 2025-3-26 21:39

作者: Congregate    時(shí)間: 2025-3-27 04:10

作者: 有權(quán)威    時(shí)間: 2025-3-27 07:27

作者: 劇毒    時(shí)間: 2025-3-27 11:46

作者: 其他    時(shí)間: 2025-3-27 14:46

作者: 廚師    時(shí)間: 2025-3-27 19:35

作者: Patrimony    時(shí)間: 2025-3-27 23:27
Kapitel VI Grundlagen der ModerneWe will deal with primary abelian groups in the universe V = L. Our main result will fill in a missing theorem on endomorphism rings. ., we have the two parallel results on torsion-free respectively primary abelian groups; see [DG 2, 3, 4] and [CG].
作者: 暫時(shí)中止    時(shí)間: 2025-3-28 03:17

作者: Barrister    時(shí)間: 2025-3-28 06:16





歡迎光臨 派博傳思國(guó)際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
金塔县| 德钦县| 平顺县| 垣曲县| 隆回县| 建湖县| 汝州市| 涿州市| 新竹市| 易门县| 凤台县| 广丰县| 保靖县| 迁安市| 色达县| 彰武县| 吕梁市| 灯塔市| 弋阳县| 镇巴县| 屏东市| 龙川县| 临漳县| 普兰县| 稷山县| 大庆市| 云南省| 乐陵市| 彰化县| 京山县| 察雅县| 绥化市| 喀什市| 武夷山市| 锡林浩特市| 崇仁县| 淄博市| 龙门县| 敦煌市| 洛隆县| 乐昌市|