派博傳思國際中心

標(biāo)題: Titlebook: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem; Luca Capogna,Scott D. Pauls,Donatella Danielli,Jer B [打印本頁]

作者: Interjection    時間: 2025-3-21 16:24
書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem影響因子(影響力)




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem影響因子(影響力)學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem網(wǎng)絡(luò)公開度




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem被引頻次




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem被引頻次學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem年度引用




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem年度引用學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem讀者反饋




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem讀者反饋學(xué)科排名





作者: linguistics    時間: 2025-3-21 21:33
Book 2007Latest editionily on the current state of knowledge regarding Pierre Pansu‘s celebrated 1982 conjecture regarding the sub-Riemannian isoperimetric profile. It presents a detailed description of Heisenberg submanifold geometry and geometric measure theory, which provides an opportunity to collect for the first tim
作者: 伸展    時間: 2025-3-22 03:33
An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
作者: aptitude    時間: 2025-3-22 07:52
The Isoperimetric Problem in Euclidean Space,rgil’s saga lies one of the earliest problems in extremal geometric analysis. For the bargain which Dido agrees to with a local potentate is this: she may have that portion of land which she is able to enclose with the hide of a bull. Legend records Dido’s ingenious and elegant solution: cutting the
作者: Overthrow    時間: 2025-3-22 11:40

作者: jaunty    時間: 2025-3-22 13:10

作者: 懶洋洋    時間: 2025-3-22 19:05

作者: disciplined    時間: 2025-3-23 00:15

作者: 對手    時間: 2025-3-23 01:27

作者: mastoid-bone    時間: 2025-3-23 07:11
https://doi.org/10.1007/978-3-662-26298-6is a variant of what has become known as the classical ... In more precise terms it may be formulated as follows: .. Needless to say, Dido’s solution is correct: the extremal regions are precisely open circular planar discs.
作者: 憲法沒有    時間: 2025-3-23 11:38

作者: 1FAWN    時間: 2025-3-23 16:04

作者: CUR    時間: 2025-3-23 18:26

作者: 招待    時間: 2025-3-23 22:36
Lahrpostsendungen im Wechselverkehrdeas and outlines of the proofs of various partial results and sketch some further techniques and methods which may lead to a solution, in order to guide the reader through the literature and to give a sense of the larger ideas that are in play.
作者: 戲法    時間: 2025-3-24 03:34

作者: STANT    時間: 2025-3-24 10:33

作者: Expand    時間: 2025-3-24 11:54
https://doi.org/10.1007/978-3-642-45719-7r analytic/geometric inequalities in the Heisenberg group and the Grushin plane. These include the .-Sobolev inequality (9.1) in the case . = 2, the Trudinger inequality (9.14), which serves as a natural substitute for (9.1) in the limiting case . = 4, and the Hardy inequality (9.24), a weighted inequality of Sobolev type on the domain ? {.}.
作者: PLIC    時間: 2025-3-24 15:31

作者: 媽媽不開心    時間: 2025-3-24 20:55

作者: Crumple    時間: 2025-3-25 02:17

作者: Pituitary-Gland    時間: 2025-3-25 03:43

作者: 胖人手藝好    時間: 2025-3-25 10:29

作者: 絕食    時間: 2025-3-25 15:29
Der deutsch-?sterreichische Postvereinntroduce the horizontal subbundle (which we think of as .) and present the Carnot-Carathéodory metric as the least time required to travel between two given points at unit speed along horizontal paths. Subsequently we introduce the notion of sub-Riemannian metric and show how it arises from degenera
作者: BATE    時間: 2025-3-25 19:43
Der deutsch-?sterreichische Postvereinchanging from point to point. If the constraints are too tight, then it may be impossible to join any two points with an admissible trajectory, hence one needs to find conditions on the constraints implying “horizontal accessibility”.
作者: Desert    時間: 2025-3-25 23:49

作者: 我不怕犧牲    時間: 2025-3-26 00:24

作者: cruise    時間: 2025-3-26 06:32
https://doi.org/10.1007/978-3-642-45719-7ity. As shown in Section 7.1, the best constant for the isoperimetric inequality agrees with the best constant for the geometric (.-) Sobolev inequality. Recall that in the context of the Heisenberg group, the .-Sobolev inequalities take the form . In this chapter we discuss sharp constants for othe
作者: radiograph    時間: 2025-3-26 12:08
An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem978-3-7643-8133-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: TIA742    時間: 2025-3-26 15:26

作者: Genome    時間: 2025-3-26 19:14

作者: 防銹    時間: 2025-3-27 00:41
übereinkommen, betreffend die AusweisbücherIn this chapter we review the definitions of Sobolev spaces, BV functions and perimeter of a set relative to the sub-Riemannian structure of ?. These notions are crucial for the development of sub-Riemannian geometric measure theory. Our treatment here is brief, focusing only on those aspects most relevant for the isoperimetric problem.
作者: libertine    時間: 2025-3-27 03:18
übereinkommen, betreffend die AusweisbücherThe isoperimetric inequality in ? with respect to the horizontal perimeter was first proved by Pansu. We first state it in the setting of . sets.
作者: 大范圍流行    時間: 2025-3-27 08:56
Horizontal Geometry of Submanifolds,This chapter is devoted to the study of the sub-Riemannian geometry of codimension 1 smooth submanifolds of the Heisenberg group.
作者: 不要嚴(yán)酷    時間: 2025-3-27 10:21

作者: 運動的我    時間: 2025-3-27 17:28
,The Isoperimetric Inequality in ?,The isoperimetric inequality in ? with respect to the horizontal perimeter was first proved by Pansu. We first state it in the setting of . sets.
作者: cogitate    時間: 2025-3-27 19:40

作者: 生銹    時間: 2025-3-28 01:52
https://doi.org/10.1007/978-3-7643-8133-2Cauchy-Riemann manifold; Riemannian geometry; Sobolev space; contact geometry; differential geometry; evo
作者: blight    時間: 2025-3-28 02:10

作者: CT-angiography    時間: 2025-3-28 07:01
Luca Capogna,Scott D. Pauls,Donatella Danielli,JerPresents a detailed description of Heisenberg submanifold geometry and geometric measure theory.Collects for the first time the various known partial results and methods of attack on Pansu‘s problem.I
作者: Etching    時間: 2025-3-28 13:07
Progress in Mathematicshttp://image.papertrans.cn/a/image/155553.jpg
作者: Diatribe    時間: 2025-3-28 14:50
9樓
作者: exhilaration    時間: 2025-3-28 21:28
9樓
作者: Lucubrate    時間: 2025-3-29 00:39
10樓
作者: 背叛者    時間: 2025-3-29 04:25
10樓
作者: indignant    時間: 2025-3-29 09:31
10樓
作者: SEED    時間: 2025-3-29 15:18
10樓




歡迎光臨 派博傳思國際中心 (http://pjsxioz.cn/) Powered by Discuz! X3.5
抚顺县| 绿春县| 筠连县| 太保市| 吴堡县| 固原市| 陆良县| 十堰市| 察哈| 旬阳县| 开封市| 黄骅市| 酒泉市| 禹城市| 水富县| 通辽市| 荥阳市| 永胜县| 雷山县| 镇雄县| 晋宁县| 布拖县| 曲沃县| 宝清县| 临高县| 庄浪县| 乐业县| 靖西县| 汤阴县| 当涂县| 霞浦县| 株洲市| 东明县| 邵武市| 塔河县| 平谷区| 潞西市| 屏南县| 页游| 通渭县| 德惠市|